- Browse by Author
Browsing by Author "Ling, Chen"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Development of a Clinical Candidate AAV3 Vector for Gene Therapy of Hemophilia B(Mary Ann Liebert, Inc., 2020-10) Brown, Harrison C.; Doering, Christopher B.; Herzog, Roland W.; Ling, Chen; Markusic, David M.; Spencer, H. Trent; Srivastava, Alok; Srivastava, Arun; Pediatrics, School of MedicineAlthough recombinant adeno-associated virus serotype 8 (AAV8) and serotype 5 (AAV5) vectors have shown efficacy in Phase 1 clinical trials for gene therapy of hemophilia B, it has become increasingly clear that these serotypes are not optimal for transducing primary human hepatocytes. We have previously reported that among the 10 most commonly used AAV serotypes, AAV serotype 3 (AAV3) vectors are the most efficient in transducing primary human hepatocytes in vitro as well as in "humanized" mice in vivo, and suggested that AAV3 vectors expressing human coagulation factor IX (hFIX) may be a more efficient alternative for clinical gene therapy of hemophilia B. In the present study, we extended these findings to develop an AAV3 vector incorporating a compact yet powerful liver-directed promoter as well as optimized hFIX cDNA sequence inserted between two AAV3 inverted terminal repeats. When packaged into an AAV3 capsid, this vector yields therapeutic levels of hFIX in hemophilia B and in "humanized" mice in vivo. Together, these studies have resulted in an AAV3 vector predicted to achieve clinical efficacy at reduced vector doses, without the need for immune-suppression, for clinical gene therapy of hemophilia B.Item High-Efficiency Transduction of Primary Human Hematopoietic Stem Cells and Erythroid Lineage-Restricted Expression by Optimized AAV6 Serotype Vectors In Vitro and in a Murine Xenograft Model In Vivo(Public Library of Science, 2013) Song, Liujiang; Li, Xiaomiao; Jayandharan, Giridhara R.; Wang, Yuan; Aslanidi, George V.; Ling, Chen; Zhong, Li; Gao, Guangping; Yoder, Mervin C.; Ling, Changquan; Tan, Mengqun; Srivastava, Arun; Pediatrics, School of MedicineWe have observed that of the 10 AAV serotypes, AAV6 is the most efficient in transducing primary human hematopoietic stem cells (HSCs), and that the transduction efficiency can be further increased by specifically mutating single surface-exposed tyrosine (Y) residues on AAV6 capsids. In the present studies, we combined the two mutations to generate a tyrosine double-mutant (Y705+731F) AAV6 vector, with which >70% of CD34(+) cells could be transduced. With the long-term objective of developing recombinant AAV vectors for the potential gene therapy of human hemoglobinopathies, we generated the wild-type (WT) and tyrosine-mutant AAV6 vectors containing the following erythroid cell-specific promoters: β-globin promoter (βp) with the upstream hyper-sensitive site 2 (HS2) enhancer from the β-globin locus control region (HS2-βbp), and the human parvovirus B19 promoter at map unit 6 (B19p6). Transgene expression from the B19p6 was significantly higher than that from the HS2-βp, and increased up to 30-fold and up to 20-fold, respectively, following erythropoietin (Epo)-induced differentiation of CD34(+) cells in vitro. Transgene expression from the B19p6 or the HS2-βp was also evaluated in an immuno-deficient xenograft mouse model in vivo. Whereas low levels of expression were detected from the B19p6 in the WT AAV6 capsid, and that from the HS2-βp in the Y705+731F AAV6 capsid, transgene expression from the B19p6 promoter in the Y705+731F AAV6 capsid was significantly higher than that from the HS2-βp, and was detectable up to 12 weeks post-transplantation in primary recipients, and up to 6 additional weeks in secondary transplanted animals. These data demonstrate the feasibility of the use of the novel Y705+731F AAV6-B19p6 vectors for high-efficiency transduction of HSCs as well as expression of the b-globin gene in erythroid progenitor cells for the potential gene therapy of human hemoglobinopathies such as β-thalassemia and sickle cell disease.Item High-Efficiency Transduction of Primary Human Hematopoietic Stem/Progenitor Cells by AAV6 Vectors: Strategies for Overcoming Donor-Variation and Implications in Genome Editing.(Nature, 2016) Ling, Chen; Bhukhai, Kanit; Yin, Zifei; Tan, Mengqun; Yoder, Mervin C.; Leboulch, Philippe; Payen, Emmanuel; Srivastava, Arun; Department of Pediatrics, IU School of MedicineWe have reported that of the 10 commonly used AAV serotype vectors, AAV6 is the most efficient in transducing primary human hematopoietic stem/progenitor cells (HSPCs). However, the transduction efficiency of the wild-type (WT) AAV6 vector varies greatly in HSPCs from different donors. Here we report two distinct strategies to further increase the transduction efficiency in HSPCs from donors that are transduced less efficiently with the WT AAV6 vectors. The first strategy involved modifications of the viral capsid proteins where specific surface-exposed tyrosine (Y) and threonine (T) residues were mutagenized to generate a triple-mutant (Y705 + Y731F + T492V) AAV6 vector. The second strategy involved the use of ex vivo transduction at high cell density. The combined use of these strategies resulted in transduction efficiency exceeding ~90% in HSPCs at significantly reduced vector doses. Our studies have significant implications in the optimal use of capsid-optimized AAV6 vectors in genome editing in HSPCs.Item Optimizing the transduction efficiency of human hematopoietic stem cells using capsid-modified AAV6 vectors in vitro and in a xenograft mouse model in vivo(Elsevier, 2013) Song, Liujiang; Kauss, M. Ariel; Kopin, Etana; Chandra, Manasa; Ul-Hasan, Taihra; Miller, Erin; Jayandharan, Giridhara R.; Rivers, Angela E.; Aslanidi, George V.; Ling, Chen; Li, Baozheng; Ma, Wenqin; Li, Xiaomiao; Andino, Lourdes M.; Zhong, Li; Tarantal, Alice F.; Yoder, Mervin C.; Wong, Kamehameha K., Jr.; Tan, Mengqun; Chatterjee, Saswati; Srivastava, Arun; Pediatrics, School of MedicineBackground aims: Although recombinant adeno-associated virus serotype 2 (AAV2) vectors have gained attention because of their safety and efficacy in numerous phase I/II clinical trials, their transduction efficiency in hematopoietic stem cells (HSCs) has been reported to be low. Only a few additional AAV serotype vectors have been evaluated, and comparative analyses of their transduction efficiency in HSCs from different species have not been performed. Methods: We evaluated the transduction efficiency of all available AAV serotype vectors (AAV1 through AAV10) in primary mouse, cynomolgus monkey and human HSCs. The transduction efficiency of the optimized AAV vectors was also evaluated in human HSCs in a murine xenograft model in vivo. Results: We observed that although there are only six amino acid differences between AAV1 and AAV6, AAV1, but not AAV6, transduced mouse HSCs well, whereas AAV6, but not AAV1, transduced human HSCs well. None of the 10 serotypes transduced cynomolgus monkey HSCs in vitro. We also evaluated the transduction efficiency of AAV6 vectors containing mutations in surface-exposed tyrosine residues. We observed that tyrosine (Y) to phenylalanine (F) point mutations in residues 445, 705 and 731 led to a significant increase in transgene expression in human HSCs in vitro and in a mouse xenograft model in vivo. Conclusions: These studies suggest that the tyrosine-mutant AAV6 serotype vectors are the most promising vectors for transducing human HSCs and that it is possible to increase further the transduction efficiency of these vectors for their potential use in HSC-based gene therapy in humans.