- Browse by Author
Browsing by Author "Lin, Shien-Fong"
Now showing 1 - 10 of 46
Results Per Page
Sort Options
Item Antiarrhythmic effects of stimulating the left dorsal branch of the thoracic nerve in a canine model of paroxysmal atrial tachyarrhythmias(Elsevier, 2018) Zhao, Ye; Yuan, Yuan; Tsai, Wei-Chung; Jiang, Zhaolei; Tian, Zhi-peng; Shen, Changyu; Lin, Shien-Fong; Fishbein, Michael C.; Everett, Thomas H., IV.; Chen, Zhenhui; Chen, Peng-Sheng; Medicine, School of MedicineBackground Stellate ganglion nerve activity (SGNA) precedes paroxysmal atrial tachyarrhythmia (PAT) episodes in dogs with intermittent high-rate left atrial (LA) pacing. The left dorsal branch of the thoracic nerve (LDTN) contains sympathetic nerves originating from the stellate ganglia. Objective The purpose of this study was to test the hypothesis that high-frequency electrical stimulation of the LDTN can cause stellate ganglia damage and suppress PAT. Methods We performed chronic LDTN stimulation in 6 dogs with and 2 dogs without intermittent rapid LA pacing while monitoring SGNA. Results LDTN stimulation reduced average SGNA from 4.36 μV (95% confidence interval [CI] 4.10–4.62 μV) at baseline to 3.22 μV (95% CI 3.04–3.40 μV) after 2 weeks (P = .028) and completely suppressed all PAT episodes in all dogs studied. Tyrosine hydroxylase staining showed large damaged regions in both stellate ganglia, with increased percentages of tyrosine hydroxylase–negative cells. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that 23.36% (95% CI 18.74%–27.98%) of ganglion cells in the left stellate ganglia and 11.15% (95% CI 9.34%–12.96%) ganglion cells in the right stellate ganglia were positive, indicating extensive cell death. A reduction of both SGNA and heart rate was also observed in dogs with LDTN stimulation but without high-rate LA pacing. Histological studies in the latter 2 dogs confirmed the presence of extensive stellate ganglia damage, along with a high percentage of terminal deoxynucleotidyl transferase dUTP nick end labeling–positive cells. Conclusion LDTN stimulation damages both left stellate ganglia and right stellate ganglia, reduces left SGNA, and is antiarrhythmic in this canine model of PAT.Item Apamin-Sensitive Calcium-Activated Potassium Currents in Rabbit Ventricles with Chronic Myocardial Infarction(Wiley Online Library, 2013-10-24) Lee, Young Soo; Chang, Po-Cheng; Hsueh, Chia-Hsiang; Maruyama, Mitsunori; Park, Hyung Wook; Rhee, Kyoung-Suk; Hsieh, Yu-Cheng; Shen, Changyu; Weiss, James N.; Chen, Zhenhui; Lin, Shien-Fong; Chen, Peng-Sheng; Department of Medicine, IU School of MedicineIntroduction Apamin-sensitive small-conductance calcium-activated potassium current (IKAS) is increased in heart failure. It is unknown if myocardial infarction (MI) is also associated with an increase of IKAS. Methods and Results We performed Langendorff perfusion and optical mapping in 6 normal hearts and 10 hearts with chronic (5 weeks) MI. An additional 6 normal and 10 MI hearts were used for patch clamp studies. The infarct size was 25% [95% confidence interval, 20 to 31] and the left ventricular ejection fraction was 0.5 [0.46 to 0.54]. The rabbits did not have symptoms of heart failure. The action potential duration measured to 80% repolarization (APD80) in the peri-infarct zone (PZ) was150 [142 to 159] ms, significantly (p=0.01) shorter than in the normal ventricles (158 to 177] ms). The intracellular Ca transient duration was also shorter in the PZ (148 [139 to 157] ms) than in normal ventricles (168 [157 to 180] ms; P=0.017). Apamin prolonged the APD80 in PZ by 9.8 [5.5 to 14.1] %, which is greater than in normal ventricles (2.8 [1.3 to 4.3] %, p=0.006). Significant shortening of APD80 was observed at the cessation of rapid pacing in MI but not in normal ventricles. Apamin prevented postpacing APD80 shortening. Patch clamp studies showed that IKAS was significantly higher in the PZ cells (2.51 [1.55 to 3.47] pA/pF, N=17) than in the normal cells (1.08 [0.36 to 1.80] pA/pF, N=15, p=0.019). Conclusion We conclude that IKAS is increased in MI ventricles and contributes significantly to ventricular repolarization especially during tachycardia.Item Atrial fibrillation and electrophysiology in transgenic mice with cardiac-restricted overexpression of FKBP12(American Physiological Society, 2019-02-01) Pan, Zhenwei; Ai, Tomohiko; Chang, Po-Cheng; Liu, Ying; Liu, Jijia; Maruyama, Mitsunori; Homsi, Mohamed; Fishbein, Michael C.; Rubart, Michael; Lin, Shien-Fong; Xiao, Deyong; Chen, Hanying; Chen, Peng-Sheng; Shou, Weinian; Li, Bai-Yan; Medicine, School of MedicineCardiomyocyte-restricted overexpression of FK506-binding protein 12 transgenic (αMyHC-FKBP12) mice develop spontaneous atrial fibrillation (AF). The aim of the present study is to explore the mechanisms underlying the occurrence of AF in αMyHC-FKBP12 mice. Spontaneous AF was documented by telemetry in vivo and Langendorff-perfused hearts of αMyHC-FKBP12 and littermate control mice in vitro. Atrial conduction velocity was evaluated by optical mapping. The patch-clamp technique was applied to determine the potentially altered electrophysiology in atrial myocytes. Channel protein expression levels were evaluated by Western blot analyses. Spontaneous AF was recorded in four of seven αMyHC-FKBP12 mice but in none of eight nontransgenic (NTG) controls. Atrial conduction velocity was significantly reduced in αMyHC-FKBP12 hearts compared with NTG hearts. Interestingly, the mean action potential duration at 50% but not 90% was significantly prolonged in αMyHC-FKBP12 atrial myocytes compared with their NTG counterparts. Consistent with decreased conduction velocity, average peak Na+ current ( INa) density was dramatically reduced and the INa inactivation curve was shifted by approximately +7 mV in αMyHC-FKBP12 atrial myocytes, whereas the activation and recovery curves were unaltered. The Nav1.5 expression level was significantly reduced in αMyHC-FKBP12 atria. Furthermore, we found increases in atrial Cav1.2 protein levels and peak L-type Ca2+ current density and increased levels of fibrosis in αMyHC-FKBP12 atria. In summary, cardiomyocyte-restricted overexpression of FKBP12 reduces the atrial Nav1.5 expression level and mean peak INa, which is associated with increased peak L-type Ca2+ current and interstitial fibrosis in atria. The combined electrophysiological and structural changes facilitated the development of local conduction block and altered action potential duration and spontaneous AF. NEW & NOTEWORTHY This study addresses a long-standing riddle regarding the role of FK506-binding protein 12 in cardiac physiology. The work provides further evidence that FK506-binding protein 12 is a critical component for regulating voltage-gated sodium current and in so doing has an important role in arrhythmogenic physiology, such as atrial fibrillation.Item Carvedilol Analogue Modulates both Basal and Stimulated Sinoatrial Node Automaticity(Springer, 2014-05) Shinohara, Tetsuji; Kim, Daehyeok; Joung, Boyoung; Maruyama, Mitsunori; Vembaiyan, Kannan; Back, Thomas G.; Chen, Wayne; Chen, Peng-Sheng; Lin, Shien-Fong; Department of Medicine, IU School of MedicineThe membrane voltage clock and calcium (Ca(2+)) clock jointly regulate sinoatrial node (SAN) automaticity. VK-II-36 is a novel carvedilol analog that suppresses sarcoplasmic reticulum (SR) Ca(2+) release but does not block the β-receptor. The effect of VK-II-36 on SAN function remains unclear. The purpose of this study was to evaluate whether VK-II-36 can influence SAN automaticity by inhibiting the Ca(2+) clock. We simultaneously mapped intracellular Ca(2+) and membrane potential in 24 isolated canine right atriums using previously described criteria of the timing of late diastolic intracellular Ca elevation (LDCAE) relative to the action potential upstroke to detect the Ca(2+) clock. Pharmacological interventions with isoproterenol (ISO), ryanodine, caffeine, and VK-II-36 were performed after baseline recordings. VK-II-36 caused sinus rate downregulation and reduced LDCAE in the pacemaking site under basal conditions (P < 0.01). ISO induced an upward shift of the pacemaking site in SAN and augmented LDCAE in the pacemaking site. ISO also significantly and dose-dependently increased the sinus rate. The treatment of VK-II-36 (30 μmol/l) abolished both the ISO-induced shift of the pacemaking site and augmentation of LDCAE (P < 0.01), and it suppressed the ISO-induced increase in sinus rate (P = 0.02). Our results suggest that the sinus rate may be partly controlled by the Ca(2+) clock via SR Ca(2+) release during β-adrenergic stimulation.Item Cervical vagal nerve stimulation activates the stellate ganglion in ambulatory dogs(Synapse, 2015-03-24) Rhee, Kyoung-Suk; Hsueh, Chia-Hsiang; Hellyer, Jessica A.; Park, Hyung Wook; Lee, Young Soo; Garlie, Jason; Onkka, Patrick; Doytchinova, Anisiia T.; Garner, John B.; Patel, Jheel; Chen, Lan S.; Fishbein, Michael C.; Everett 4th, Thomas; Lin, Shien-Fong; Chen, Peng-Sheng; Department of Neurology, IU School of MedicineBACKGROUND AND OBJECTIVES: Recent studies showed that, in addition to parasympathetic nerves, cervical vagal nerves contained significant sympathetic nerves. We hypothesized that cervical vagal nerve stimulation (VNS) may capture the sympathetic nerves within the vagal nerve and activate the stellate ganglion. MATERIALS AND METHODS: We recorded left stellate ganglion nerve activity (SGNA), left thoracic vagal nerve activity (VNA), and subcutaneous electrocardiogram in seven dogs during left cervical VNS with 30 seconds on-time and 30 seconds off time. We then compared the SGNA between VNS on and off times. RESULTS: Cervical VNS at moderate (0.75 mA) output induced large SGNA, elevated heart rate (HR), and reduced HR variability, suggesting sympathetic activation. Further increase of the VNS output to >1.5 mA increased SGNA but did not significantly increase the HR, suggesting simultaneous sympathetic and parasympathetic activation. The differences of integrated SGNA and integrated VNA between VNS on and off times (ΔSGNA) increased progressively from 5.2 mV-s {95% confidence interval (CI): 1.25-9.06, p=0.018, n=7} at 1.0 mA to 13.7 mV-s (CI: 5.97-21.43, p=0.005, n=7) at 1.5 mA. The difference in HR (ΔHR, bpm) between on and off times was 5.8 bpm (CI: 0.28-11.29, p=0.042, n=7) at 1.0 mA and 5.3 bpm (CI 1.92 to 12.61, p=0.122, n=7) at 1.5 mA. CONCLUSION: Intermittent cervical VNS may selectively capture the sympathetic components of the vagal nerve and excite the stellate ganglion at moderate output. Increasing the output may result in simultaneously sympathetic and parasympathetic capture.Item Chronic Low-Level Vagus Nerve Stimulation Reduces Stellate Ganglion Nerve Activity and Paroxysmal Atrial Tachyarrhythmias in Ambulatory Canines(Office of the Vice Chancellor for Research, 2011-04-08) Shen, Mark J.; Shinohara, Tetsuji; Park, Hyung-Wook; Frick, Kyle; Ice, Daniel S.; Choi, Eue-Keun; Han, Seongwook; Sharma, Rahul; Shen, Changyu; Fishbein, Michael C.; Chen, Lan S.; Lopshire, John C.; Zipes, Douglas P.; Lin, Shien-Fong; Chen, Peng-ShengIntroduction: Left sided low-level vagus nerve stimulation (LL-VNS) is used clinically for epilepsy and depression. We hypothesize that LL-VNS can suppress sympathetic outflow and reduce atrial tachyarrhythmias in ambulatory dogs. Methods: We implanted in 12 dogs a neurostimulator in left cervical vagus nerve and a radiotransmitter for continuous recording of left stellate ganglion nerve activities (SGNA), left thoracic vagal nerve activities (VNA) and electrocardiograms. The first 6 dogs (Group 1) underwent 1 week continuous LL-VNS. Another 6 dogs (Group 2) underwent intermittent rapid atrial pacing followed by active or sham LL-VNS on alternate weeks. Results: Integrated SGNA was significantly reduced during LL-VNS (7.8±0.9 mV-s vs. 9.4±0.9 mVs at baseline, P<0.05) in Group 1.The reduction was most apparent from 7 to 9 AM, (31% reduction, 10.8±2.5 mV-s versus 15.6±2.9 mV-s at baseline, P<0.01), along with a significantly reduced heart rate (P<0.05). SGNA-induced heart rate acceleration averaged 107.9±9.0 bpm during LL-VNS and 129.2±9.3 bpm at baseline (P<0.05). LL-VNS did not change VNA. The tyrosine hydroxylase-positive nerve structures in the left stellate ganglion were 99,684±22,257 µm2/mm2 in LL-VNS dogs and 186,561±11,383 µm2/mm2 (P<0.01) in normal control dogs. In Group 2, the frequencies of paroxysmal atrial fibrillation and atrial tachycardia during active LLVNS were 1.4±2.5/d and 8.0±5.8/d, respectively, significantly lower than during sham stimulation (9.2±6.2/d, P<0.01 and 22.0±4.4/d, P<0.001, respectively). Conclusion: LL-VNS suppresses SGNA and reduces the incidences of paroxysmal atrial tachyarrhythmias in ambulatory dogs. Significant neural remodeling of the left stellate ganglion is evident one week after cessation of chronic LL-VNS.Item Concomitant SK current activation and sodium current inhibition cause J wave syndrome(American Society for Clinical Investigation, 2018-11-15) Chen, Mu; Xu, Dong-Zhu; Wu, Adonis Z.; Guo, Shuai; Wan, Juyi; Yin, Dechun; Lin, Shien-Fong; Chen, Zhenhui; Rubart-von der Lohe, Michael; Everett, Thomas H., IV; Qu, Zhilin; Weiss, James N.; Chen, Peng-Sheng; Medicine, School of MedicineThe mechanisms of J wave syndrome (JWS) are incompletely understood. Here, we showed that the concomitant activation of small-conductance calcium-activated potassium (SK) current (IKAS) and inhibition of sodium current by cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) recapitulate the phenotypes of JWS in Langendorff-perfused rabbit hearts. CyPPA induced significant J wave elevation and frequent spontaneous ventricular fibrillation (SVF), as well as sinus bradycardia, atrioventricular block, and intraventricular conduction delay. IKAS activation by CyPPA resulted in heterogeneous shortening of action potential (AP) duration (APD) and repolarization alternans. CyPPA inhibited cardiac sodium current (INa) and decelerated AP upstroke and intracellular calcium transient. SVFs were typically triggered by short-coupled premature ventricular contractions, initiated with phase 2 reentry and originated more frequently from the right than the left ventricles. Subsequent IKAS blockade by apamin reduced J wave elevation and eliminated SVF. β-Adrenergic stimulation was antiarrhythmic in CyPPA-induced electrical storm. Like CyPPA, hypothermia (32.0°C) also induced J wave elevation and SVF. It facilitated negative calcium-voltage coupling and phase 2 repolarization alternans with spatial and electromechanical discordance, which were ameliorated by apamin. These findings suggest that IKAS activation contributes to the development of JWS in rabbit ventricles.Item Curve-Fitting the Intracellular Calcium Dynamics(Taiwan Society of Cardiology, 2013-07) Lin, Shien-Fong; Hsueh, Chia-Hsiang; Department of Medicine, IU School of Medicine"No one believes modeling results except the one who performed the calculation; ...everyone believes the experimental results except the one who did the measurements." P. J. Roache - Computational Physicist.Item Effects of carvedilol on cardiac autonomic nerve activities during sinus rhythm and atrial fibrillation in ambulatory dogs(Oxford University Press, 2014-07) Choi, Eue-Keun; Shen, Mark J.; Lin, Shien-Fong; Chen, Peng-Sheng; Oh, Seil; Department of Medicine, IU School of MedicineAIMS: We hypothesized that carvedilol can effectively suppress autonomic nerve activity (ANA) in ambulatory dogs during sinus rhythm and atrial fibrillation (AF), and that carvedilol withdrawal can lead to rebound elevation of ANA. Carvedilol is known to block pre-junctional β2-adrenoceptor responsible for norepinephrine release. METHODS AND RESULTS: We implanted radiotransmitters to record stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA), and superior left ganglionated plexi nerve activity (SLGPNA) in 12 ambulatory dogs. Carvedilol (12.5 mg orally twice a day) was given for 7 days during sinus rhythm (n = 8). Four of the eight dogs and an additional four dogs were paced into persistent AF. Carvedilol reduced heart rate [from 103 b.p.m. (95% confidence interval (CI), 100-105) to 100 b.p.m. (95% CI, 98-102), P = 0.044], suppressed integrated nerve activities (Int-NAs, SGNA by 17%, VNA by 19%, and SLGPNA by 12%; all P < 0.05 vs. the baseline), and significantly reduced the incidence (from 8 ± 6 to 3 ± 3 episodes/day, P < 0.05) and total duration (from 68 ± 64 to 16 ± 21 s/day, P < 0.05) of paroxysmal atrial tachycardia (PAT). Following the development of persistent AF, carvedilol loading was associated with AF termination in three dogs. In the remaining five dogs, Int-NAs were not significantly suppressed by carvedilol, but SGNA significantly increased by 16% after carvedilol withdrawal (P < 0.001). CONCLUSION: Carvedilol suppresses ANA and PAT in ambulatory dogs during sinus rhythm.Item Effects of ondansetron on apamin-sensitive small conductance calcium-activated potassium currents in pacing-induced failing rabbit hearts(Elsevier, 2019) Yin, Dechun; Yang, Na; Tian, Zhipeng; Wu, Adonis Z.; Xu, Dongzhu; Chen, Mu; Kamp, Nicholas J.; Wang, Zhuo; Shen, Changyu; Chen, Zhenhui; Lin, Shien-Fong; Rubart-von der Lohe, Michael; Chen, Peng-Sheng; Everett, Thomas H., IV; Medicine, School of MedicineBackground Ondansetron, a widely prescribed antiemetic, has been implicated in drug-induced long QT syndrome. Recent patch clamp experiments have shown that ondansetron inhibits the apamin-sensitive small conductance calcium-activated potassium current (IKAS). Objective The purpose of this study was to determine whether ondansetron causes action potential duration (APD) prolongation by IKAS inhibition. Methods Optical mapping was performed in rabbit hearts with pacing-induced heart failure (HF) and in normal hearts before and after ondansetron (100 nM) infusion. APD at 80% repolarization (APD80) and arrhythmia inducibility were determined. Additional studies with ondansetron were performed in normal hearts perfused with hypokalemic Tyrode's (2.4 mM) solution before or after apamin administration. Results The corrected QT interval in HF was 326 ms (95% confidence interval [CI] 306–347 ms) at baseline and 364 ms (95% CI 351–378 ms) after ondansetron infusion (P < .001). Ondansetron significantly prolonged APD80 in the HF group and promoted early afterdepolarizations, steepened the APD restitution curve, and increased ventricular vulnerability. Ventricular fibrillation was not inducible in HF ventricles at baseline, but after ondansetron infusion, ventricular fibrillation was induced in 5 of the 7 ventricles (P = .021). In hypokalemia, apamin prolonged APD80 from 163 ms (95% CI 146–180 ms) to 180 ms (95% CI 156–204 ms) (P = .018). Subsequent administration of ondansetron failed to further prolong APD80 (180 ms [95% CI 156–204 ms] vs 179 ms [95% CI 165–194 ms]; P = .789). The results were similar when ondansetron was administered first, followed by apamin. Conclusion Ondansetron is a specific IKAS blocker at therapeutic concentrations. Ondansetron may prolong the QT interval in HF by inhibiting small conductance calcium-activated potassium channels, which increases the vulnerability to ventricular arrhythmias.