- Browse by Author
Browsing by Author "Lin, Peng"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dosage Transmission Disequilibrium Test (dTDT) for Linkage and Association Detection(Public Library of Science, 2013-05-14) Zhang, Zhehao; Wang, Jen-Chyong; Howells, William; Lin, Peng; Agrawal, Arpana; Edenberg, Howard J.; Tischfield, Jay A.; Schuckit, Marc A.; Bierut, Laura J.; Goate, Alison; Rice, John P.; Biochemistry and Molecular Biology, School of MedicineBoth linkage and association studies have been successfully applied to identify disease susceptibility genes with genetic markers such as microsatellites and Single Nucleotide Polymorphisms (SNPs). As one of the traditional family-based studies, the Transmission/Disequilibrium Test (TDT) measures the over-transmission of an allele in a trio from its heterozygous parents to the affected offspring and can be potentially useful to identify genetic determinants for complex disorders. However, there is reduced information when complete trio information is unavailable. In this study, we developed a novel approach to "infer" the transmission of SNPs by combining both the linkage and association data, which uses microsatellite markers from families informative for linkage together with SNP markers from the offspring who are genotyped for both linkage and a Genome-Wide Association Study (GWAS). We generalized the traditional TDT to process these inferred dosage probabilities, which we name as the dosage-TDT (dTDT). For evaluation purpose, we developed a simulation procedure to assess its operating characteristics. We applied the dTDT to the simulated data and documented the power of the dTDT under a number of different realistic scenarios. Finally, we applied our methods to a family study of alcohol dependence (COGA) and performed individual genotyping on complete families for the top signals. One SNP (rs4903712 on chromosome 14) remained significant after correcting for multiple testing Methods developed in this study can be adapted to other platforms and will have widespread applicability in genomic research when case-control GWAS data are collected in families with existing linkage data.Item A New Statistic to Evaluate Imputation Reliability(Public Library of Science, 2010-03-15) Lin, Peng; Hartz, Sarah M.; Zhang, Zhehao; Saccone, Scott F.; Wang, Jia; Tischfield, Jay A.; Edenberg, Howard J.; Kramer, John R.; Goate, Alison M.; Bierut, Laura J.; Rice, John P.; COGA Collaborators COGEND Collaborators, GENEVA; Biochemistry and Molecular Biology, School of MedicineBackground As the amount of data from genome wide association studies grows dramatically, many interesting scientific questions require imputation to combine or expand datasets. However, there are two situations for which imputation has been problematic: (1) polymorphisms with low minor allele frequency (MAF), and (2) datasets where subjects are genotyped on different platforms. Traditional measures of imputation cannot effectively address these problems. Methodology/Principal Findings We introduce a new statistic, the imputation quality score (IQS). In order to differentiate between well-imputed and poorly-imputed single nucleotide polymorphisms (SNPs), IQS adjusts the concordance between imputed and genotyped SNPs for chance. We first evaluated IQS in relation to minor allele frequency. Using a sample of subjects genotyped on the Illumina 1 M array, we extracted those SNPs that were also on the Illumina 550 K array and imputed them to the full set of the 1 M SNPs. As expected, the average IQS value drops dramatically with a decrease in minor allele frequency, indicating that IQS appropriately adjusts for minor allele frequency. We then evaluated whether IQS can filter poorly-imputed SNPs in situations where cases and controls are genotyped on different platforms. Randomly dividing the data into “cases” and “controls”, we extracted the Illumina 550 K SNPs from the cases and imputed the remaining Illumina 1 M SNPs. The initial Q-Q plot for the test of association between cases and controls was grossly distorted (λ = 1.15) and had 4016 false positives, reflecting imputation error. After filtering out SNPs with IQS<0.9, the Q-Q plot was acceptable and there were no longer false positives. We then evaluated the robustness of IQS computed independently on the two halves of the data. In both European Americans and African Americans the correlation was >0.99 demonstrating that a database of IQS values from common imputations could be used as an effective filter to combine data genotyped on different platforms. Conclusions/Significance IQS effectively differentiates well-imputed and poorly-imputed SNPs. It is particularly useful for SNPs with low minor allele frequency and when datasets are genotyped on different platforms.