ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lin, Zhen"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Promotion of diet-induced obesity and metabolic syndromes by BID is associated with gut microbiota
    (Wolters Kluwer, 2022) Yan, Shengmin; Zhou, Jun; Zhang, Hao; Lin, Zhen; Khambu, Bilon; Liu, Gang; Ma, Michelle; Chen, Xiaoyun; Chalasani, Naga; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of Medicine
    A growing body of evidence has indicated an expanding functional network of B-cell lymphoma 2 (BCL-2) family proteins beyond regulation of cell death and survival. Here, we examined the role and mechanisms of BH3 interacting-domain death agonist (BID), a pro-death BCL-2 family member, in the development of diet-induced metabolic dysfunction. Mice deficient in bid (bid-/- ) were resistant to high-fat diet (HFD)-induced obesity, hepatic steatosis, and dyslipidemia with an increased insulin sensitivity. Indirect calorimetry analysis indicated that bid deficiency increased metabolic rate and decreased respiratory exchange ratio, suggesting a larger contribution of lipids to overall energy expenditure. While expression of several genes related to lipid accumulation was only increased in wild-type livers, metabolomics analysis revealed a consistent reduction in fatty acids but an increase in certain sugars and Krebs cycle intermediates in bid-/- livers. Gut microbiota (GM) analysis indicated that HFD induced gut dysbiosis with differential patterns in wild-type and in bid-/- mice. Notably, abrogation of GM by antibiotics during HFD feeding eliminated the beneficial effects against obesity and hepatic steatosis conferred by the bid deficiency. Conclusion: These results indicate that the protective role of bid-deficiency against diet-induced metabolic dysfunction interacts with the function of GM.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University