- Browse by Author
Browsing by Author "Lin, Xihong"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies(Springer Nature, 2022) Li, Zilin; Li, Xihao; Zhou, Hufeng; Gaynor, Sheila M.; Selvaraj, Margaret Sunitha; Arapoglou, Theodore; Quick, Corbin; Liu, Yaowu; Chen, Han; Sun, Ryan; Dey, Rounak; Arnett, Donna K.; Auer, Paul L.; Bielak, Lawrence F.; Bis, Joshua C.; Blackwell, Thomas W.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer A.; Cade, Brian E.; Conomos, Matthew P.; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; de Vries, Paul S.; Duggirala, Ravindranath; Franceschini, Nora; Freedman, Barry I.; Göring, Harald H. H.; Guo, Xiuqing; Kalyani, Rita R.; Kooperberg, Charles; Kral, Brian G.; Lange, Leslie A.; Lin, Bridget M.; Manichaikul, Ani; Manning, Alisa K.; Martin, Lisa W.; Mathias, Rasika A.; Meigs, James B.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Peyser, Patricia A.; Psaty, Bruce M.; Raffield, Laura M.; Redline, Susan; Reiner, Alexander P.; Reupena, Muagututi'a Sefuiva; Rice, Kenneth M.; Rich, Stephen S.; Smith, Jennifer A.; Taylor, Kent D.; Taub, Margaret A.; Vasan, Ramachandran S.; Weeks, Daniel E.; Wilson, James G.; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; TOPMed Lipids Working Group; Rotter, Jerome I.; Willer, Cristen J.; Natarajan, Pradeep; Peloso, Gina M.; Lin, Xihong; Biostatistics and Health Data Science, School of MedicineLarge-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.Item FAVOR: functional annotation of variants online resource and annotator for variation across the human genome(Oxford University Press, 2023) Zhou, Hufeng; Arapoglou, Theodore; Li, Xihao; Li, Zilin; Zheng, Xiuwen; Moore, Jill; Asok, Abhijith; Kumar, Sushant; Blue, Elizabeth E.; Buyske, Steven; Cox, Nancy; Felsenfeld, Adam; Gerstein, Mark; Kenny, Eimear; Li, Bingshan; Matise, Tara; Philippakis, Anthony; Rehm, Heidi L.; Sofia, Heidi J.; Snyder, Grace; NHGRI Genome Sequencing Program Variant Functional Annotation Working Group; Weng, Zhiping; Neale, Benjamin; Sunyaev, Shamil R.; Lin, Xihong; Biostatistics, School of Public HealthLarge biobank-scale whole genome sequencing (WGS) studies are rapidly identifying a multitude of coding and non-coding variants. They provide an unprecedented resource for illuminating the genetic basis of human diseases. Variant functional annotations play a critical role in WGS analysis, result interpretation, and prioritization of disease- or trait-associated causal variants. Existing functional annotation databases have limited scope to perform online queries and functionally annotate the genotype data of large biobank-scale WGS studies. We develop the Functional Annotation of Variants Online Resources (FAVOR) to meet these pressing needs. FAVOR provides a comprehensive multi-faceted variant functional annotation online portal that summarizes and visualizes findings of all possible nine billion single nucleotide variants (SNVs) across the genome. It allows for rapid variant-, gene- and region-level queries of variant functional annotations. FAVOR integrates variant functional information from multiple sources to describe the functional characteristics of variants and facilitates prioritizing plausible causal variants influencing human phenotypes. Furthermore, we provide a scalable annotation tool, FAVORannotator, to functionally annotate large-scale WGS studies and efficiently store the genotype and their variant functional annotation data in a single file using the annotated Genomic Data Structure (aGDS) format, making downstream analysis more convenient. FAVOR and FAVORannotator are available at https://favor.genohub.org.Item Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies(Springer Nature, 2023) Li, Xihao; Quick, Corbin; Zhou, Hufeng; Gaynor, Sheila M.; Liu, Yaowu; Chen, Han; Selvaraj, Margaret Sunitha; Sun, Ryan; Dey, Rounak; Arnett, Donna K.; Bielak, Lawrence F.; Bis, Joshua C.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer A.; Cade, Brian E.; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; de Vries, Paul S.; Duggirala, Ravindranath; Freedman, Barry I.; Göring, Harald H. H.; Guo, Xiuqing; Haessler, Jeffrey; Kalyani, Rita R.; Kooperberg, Charles; Kral, Brian G.; Lange, Leslie A.; Manichaikul, Ani; Martin, Lisa W.; McGarvey, Stephen T.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Peyser, Patricia A.; Psaty, Bruce M.; Raffield, Laura M.; Redline, Susan; Reiner, Alexander P.; Reupena, Muagututi'a Sefuiva; Rice, Kenneth M.; Rich, Stephen S.; Sitlani, Colleen M.; Smith, Jennifer A.; Taylor, Kent D.; Vasan, Ramachandran S.; Willer, Cristen J.; Wilson, James G.; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; TOPMed Lipids Working Group; Rotter, Jerome I.; Natarajan, Pradeep; Peloso, Gina M.; Li, Zilin; Lin, Xihong; Biostatistics and Health Data Science, School of MedicineMeta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.Item Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed Whole Genome Sequencing Study(medRxiv, 2023-06-29) Wang, Yuxuan; Selvaraj, Margaret Sunitha; Li, Xihao; Li, Zilin; Holdcraft, Jacob A.; Arnett, Donna K.; Bis, Joshua C.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Cade, Brian E.; Carlson, Jenna C.; Carson, April P.; Chen, Yii-Der Ida; Curran, Joanne E.; de Vries, Paul S.; Dutcher, Susan K.; Ellinor, Patrick T.; Floyd, James S.; Fornage, Myriam; Freedman, Barry I.; Gabriel, Stacey; Germer, Soren; Gibbs, Richard A.; Guo, Xiuqing; He, Jiang; Heard-Costa, Nancy; Hildalgo, Bertha; Hou, Lifang; Irvin, Marguerite R.; Joehanes, Roby; Kaplan, Robert C.; Kardia, Sharon Lr.; Kelly, Tanika N.; Kim, Ryan; Kooperberg, Charles; Kral, Brian G.; Levy, Daniel; Li, Changwei; Liu, Chunyu; Lloyd-Jone, Don; Loos, Ruth Jf.; Mahaney, Michael C.; Martin, Lisa W.; Mathias, Rasika A.; Minster, Ryan L.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Murabito, Joanne M.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Preuss, Michael H.; Psaty, Bruce M.; Raffield, Laura M.; Rao, Dabeeru C.; Redline, Susan; Reiner, Alexander P.; Rich, Stephen S.; Ruepena, Muagututi'a Sefuiva; Sheu, Wayne H-H; Smith, Jennifer A.; Smith, Albert; Tiwari, Hemant K.; Tsai, Michael Y.; Viaud-Martinez, Karine A.; Wang, Zhe; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Rotter, Jerome I.; Lin, Xihong; Natarajan, Pradeep; Peloso, Gina M.; Biostatistics and Health Data Science, School of MedicineLong non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess the associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant aggregate association tests using the STAAR (variant-Set Test for Association using Annotation infoRmation) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500 kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variations and rare protein coding variations at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNA, implicating new therapeutic opportunities.Item Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program(Springer Nature, 2021) Taliun, Daniel; Harris, Daniel N.; Kessler, Michael D.; Carlson, Jedidiah; Szpiech, Zachary A.; Torres, Raul; Gagliano Taliun, Sarah A.; Corvelo, André; Gogarten, Stephanie M.; Kang, Hyun Min; Pitsillides, Achilleas N.; LeFaive, Jonathon; Lee, Seung-Been; Tian, Xiaowen; Browning, Brian L.; Das, Sayantan; Emde, Anne-Katrin; Clarke, Wayne E.; Loesch, Douglas P.; Shetty, Amol C.; Blackwell, Thomas W.; Smith, Albert V.; Wong, Quenna; Liu, Xiaoming; Conomos, Matthew P.; Bobo, Dean M.; Aguet, François; Albert, Christine; Alonso, Alvaro; Ardlie, Kristin G.; Arking, Dan E.; Aslibekyan, Stella; Auer, Paul L.; Barnard, John; Barr, R. Graham; Barwick, Lucas; Becker, Lewis C.; Beer, Rebecca L.; Benjamin, Emelia J.; Bielak, Lawrence F.; Blangero, John; Boehnke, Michael; Bowden, Donald W.; Brody, Jennifer A.; Burchard, Esteban G.; Cade, Brian E.; Casella, James F.; Chalazan, Brandon; Chasman, Daniel I.; Chen, Yii-Der Ida; Cho, Michael H.; Choi, Seung Hoan; Chung, Mina K.; Clish, Clary B.; Correa, Adolfo; Curran, Joanne E.; Custer, Brian; Darbar, Dawood; Daya, Michelle; de Andrade, Mariza; DeMeo, Dawn L.; Dutcher, Susan K.; Ellinor, Patrick T.; Emery, Leslie S.; Eng, Celeste; Fatkin, Diane; Fingerlin, Tasha; Forer, Lukas; Fornage, Myriam; Franceschini, Nora; Fuchsberger, Christian; Fullerton, Stephanie M.; Germer, Soren; Gladwin, Mark T.; Gottlieb, Daniel J.; Guo, Xiuqing; Hall, Michael E.; He, Jiang; Heard-Costa, Nancy L.; Heckbert, Susan R.; Irvin, Marguerite R.; Johnsen, Jill M.; Johnson, Andrew D.; Kaplan, Robert; Kardia, Sharon L. R.; Kelly, Tanika; Kelly, Shannon; Kenny, Eimear E.; Kiel, Douglas P.; Klemmer, Robert; Konkle, Barbara A.; Kooperberg, Charles; Köttgen, Anna; Lange, Leslie A.; Lasky-Su, Jessica; Levy, Daniel; Lin, Xihong; Lin, Keng-Han; Liu, Chunyu; Loos, Ruth J. F.; Garman, Lori; Gerszten, Robert; Lubitz, Steven A.; Lunetta, Kathryn L.; Mak, Angel C. Y.; Manichaikul, Ani; Manning, Alisa K.; Mathias, Rasika A.; McManus, David D.; McGarvey, Stephen T.; Meigs, James B.; Meyers, Deborah A.; Mikulla, Julie L.; Minear, Mollie A.; Mitchell, Braxton D.; Mohanty, Sanghamitra; Montasser, May E.; Montgomery, Courtney; Morrison, Alanna C.; Murabito, Joanne M.; Natale, Andrea; Natarajan, Pradeep; Nelson, Sarah C.; North, Kari E.; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Pankratz, Nathan; Peloso, Gina M.; Peyser, Patricia A.; Pleiness, Jacob; Post, Wendy S.; Psaty, Bruce M.; Rao, D. C.; Redline, Susan; Reiner, Alexander P.; Roden, Dan; Rotter, Jerome I.; Ruczinski, Ingo; Sarnowski, Chloé; Schoenherr, Sebastian; Schwartz, David A.; Seo, Jeong-Sun; Seshadri, Sudha; Sheehan, Vivien A.; Sheu, Wayne H.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Smith, Jennifer A.; Sotoodehnia, Nona; Stilp, Adrienne M.; Tang, Weihong; Taylor, Kent D.; Telen, Marilyn; Thornton, Timothy A.; Tracy, Russell P.; Van Den Berg, David J.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Vrieze, Scott; Weeks, Daniel E.; Weir, Bruce S.; Weiss, Scott T.; Weng, Lu-Chen; Willer, Cristen J.; Zhang, Yingze; Zhao, Xutong; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Boerwinkle, Eric; Gabriel, Stacey; Gibbs, Richard; Rice, Kenneth M.; Rich, Stephen S.; Silverman, Edwin K.; Qasba, Pankaj; Gan, Weiniu; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Papanicolaou, George J.; Nickerson, Deborah A.; Browning, Sharon R.; Zody, Michael C.; Zöllner, Sebastian; Wilson, James G.; Cupples, L. Adrienne; Laurie, Cathy C.; Jaquish, Cashell E.; Hernandez, Ryan D.; O'Connor, Timothy D.; Abecasis, Gonçalo R.; Epidemiology, Richard M. Fairbanks School of Public HealthThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.Item STAAR workflow: a cloud-based workflow for scalable and reproducible rare variant analysis(Oxford University Press, 2022) Gaynor, Sheila M.; Westerman, Kenneth E.; Ackovic, Lea L.; Li, Xihao; Li, Zilin; Manning, Alisa K.; Philippakis, Anthony; Lin, Xihong; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthSummary: We developed the variant-Set Test for Association using Annotation infoRmation (STAAR) workflow description language (WDL) workflow to facilitate the analysis of rare variants in whole genome sequencing association studies. The open-access STAAR workflow written in the WDL allows a user to perform rare variant testing for both gene-centric and genetic region approaches, enabling genome-wide, candidate and conditional analyses. It incorporates functional annotations into the workflow as introduced in the STAAR method in order to boost the rare variant analysis power. This tool was specifically developed and optimized to be implemented on cloud-based platforms such as BioData Catalyst Powered by Terra. It provides easy-to-use functionality for rare variant analysis that can be incorporated into an exhaustive whole genome sequencing analysis pipeline. Availability and implementation: The workflow is freely available from https://dockstore.org/workflows/github.com/sheilagaynor/STAAR_workflow.Item Whole Genome Sequence Association Analysis of Fasting Glucose and Fasting Insulin Levels in Diverse Cohorts from the NHLBI TOPMed Program(Springer Nature, 2022-07-28) DiCorpo, Daniel; Gaynor, Sheila M.; Russell, Emily M.; Westerman, Kenneth E.; Raffield, Laura M.; Majarian, Timothy D.; Wu, Peitao; Sarnowski, Chloé; Highland, Heather M.; Jackson, Anne; Hasbani, Natalie R.; de Vries, Paul S.; Brody, Jennifer A.; Hidalgo, Bertha; Guo, Xiuqing; Perry, James A.; O’Connell, Jeffrey R.; Lent, Samantha; Montasser, May E.; Cade, Brian E.; Jain, Deepti; Wang, Heming; D’Oliveira Albanus, Ricardo; Varshney, Arushi; Yanek, Lisa R.; Lange, Leslie; Palmer, Nicholette D.; Almeida, Marcio; Peralta, Juan M.; Aslibekyan, Stella; Baldridge, Abigail S.; Bertoni, Alain G.; Bielak, Lawrence F.; Chen, Chung-Shiuan; Chen, Yii-Der Ida; Choi, Won Jung; Goodarzi, Mark O.; Floyd, James S.; Irvin, Marguerite R.; Kalyani, Rita R.; Kelly, Tanika N.; Lee, Seonwook; Liu, Ching-Ti; Loesch, Douglas; Manson, JoAnn E.; Minster, Ryan L.; Naseri, Take; Pankow, James S.; Rasmussen-Torvik, Laura J.; Reiner, Alexander P.; Reupena, Muagututi’a Sefuiva; Selvin, Elizabeth; Smith, Jennifer A.; Weeks, Daniel E.; Xu, Huichun; Yao, Jie; Zhao, Wei; Parker, Stephen; Alonso, Alvaro; Arnett, Donna K.; Blangero, John; Boerwinkle, Eric; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; Duggirala, Ravindranath; He, Jiang; Heckbert, Susan R.; Kardia, Sharon L.R.; Kim, Ryan W.; Kooperberg, Charles; Liu, Simin; Mathias, Rasika A.; McGarvey, Stephen T.; Mitchell, Braxton D.; Morrison, Alanna C.; Peyser, Patricia A.; Psaty, Bruce M.; Redline, Susan; Shuldiner, Alan R.; Taylor, Kent D.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Florez, Jose C.; Wilson, James G.; Sladek, Robert; Rich, Stephen S.; Rotter, Jerome I.; Lin, Xihong; Dupuis, Josée; Meigs, James B.; Wessel, Jennifer; Manning, Alisa K.; Epidemiology, School of Public HealthThe genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI's Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.Item Whole Genome Sequencing Analysis of Body Mass Index Identifies Novel African Ancestry-Specific Risk Allele(medRxiv, 2023-08-22) Zhang, Xinruo; Brody, Jennifer A.; Graff, Mariaelisa; Highland, Heather M.; Chami, Nathalie; Xu, Hanfei; Wang, Zhe; Ferrier, Kendra; Chittoor, Geetha; Josyula, Navya S.; Li, Xihao; Li, Zilin; Allison, Matthew A.; Becker, Diane M.; Bielak, Lawrence F.; Bis, Joshua C.; Boorgula, Meher Preethi; Bowden, Donald W.; Broome, Jai G.; Buth, Erin J.; Carlson, Christopher S.; Chang, Kyong-Mi; Chavan, Sameer; Chiu, Yen-Feng; Chuang, Lee-Ming; Conomos, Matthew P.; DeMeo, Dawn L.; Du, Margaret; Duggirala, Ravindranath; Eng, Celeste; Fohner, Alison E.; Freedman, Barry I.; Garrett, Melanie E.; Guo, Xiuqing; Haiman, Chris; Heavner, Benjamin D.; Hidalgo, Bertha; Hixson, James E.; Ho, Yuk-Lam; Hobbs, Brian D.; Hu, Donglei; Hui, Qin; Hwu, Chii-Min; Jackson, Rebecca D.; Jain, Deepti; Kalyani, Rita R.; Kardia, Sharon L. R.; Kelly, Tanika N.; Lange, Ethan M.; LeNoir, Michael; Li, Changwei; Marchand, Loic Le; McDonald, Merry-Lynn N.; McHugh, Caitlin P.; Morrison, Alanna C.; Naseri, Take; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; O'Connell, Jeffrey; O'Donnell, Christopher J.; Palmer, Nicholette D.; Pankow, James S.; Perry, James A.; Peters, Ulrike; Preuss, Michael H.; Rao, D. C.; Regan, Elizabeth A.; Reupena, Sefuiva M.; Roden, Dan M.; Rodriguez-Santana, Jose; Sitlani, Colleen M.; Smith, Jennifer A.; Tiwari, Hemant K.; Vasan, Ramachandran S.; Wang, Zeyuan; Weeks, Daniel E.; Wessel, Jennifer; Wiggins, Kerri L.; Wilkens, Lynne R.; Wilson, Peter W. F.; Yanek, Lisa R.; Yoneda, Zachary T.; Zhao, Wei; Zöllner, Sebastian; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Blangero, John; Boerwinkle, Eric; Burchard, Esteban G.; Carson, April P.; Chasman, Daniel I.; Chen, Yii-Der Ida; Curran, Joanne E.; Fornage, Myriam; Gordeuk, Victor R.; He, Jiang; Heckbert, Susan R.; Hou, Lifang; Irvin, Marguerite R.; Kooperberg, Charles; Minster, Ryan L.; Mitchell, Braxton D.; Nouraie, Mehdi; Psaty, Bruce M.; Raffield, Laura M.; Reiner, Alexander P.; Rich, Stephen S.; Rotter, Jerome I.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Taylor, Kent D.; Telen, Marilyn J.; Weiss, Scott T.; Zhang, Yingze; Heard-Costa, Nancy; Sun, Yan V.; Lin, Xihong; Cupples, L. Adrienne; Lange, Leslie A.; Liu, Ching-Ti; Loos, Ruth J. F.; North, Kari E.; Justice, Anne E.; Biostatistics and Health Data Science, School of MedicineObesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10−9). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.