ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lieder, Helmut Raphael"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Non-responsiveness to cardioprotection by ischaemic preconditioning in Ossabaw minipigs with genetic predisposition to, but without the phenotype of the metabolic syndrome
    (Springer, 2022-11-11) Kleinbongard, Petra; Lieder, Helmut Raphael; Skyschally, Andreas; Alloosh, Mouhamad; Gödecke, Axel; Rahmann, Sven; Sturek, Michael; Heusch, Gerd; Anatomy, Cell Biology and Physiology, School of Medicine
    The translation of successful preclinical and clinical proof-of-concept studies on cardioprotection to the benefit of patients with reperfused acute myocardial infarction has been difficult so far. This difficulty has been attributed to confounders which patients with myocardial infarction typically have but experimental animals usually not have. The metabolic syndrome is a typical confounder. We hypothesised that there may also be a genuine non-responsiveness to cardioprotection and used Ossabaw minipigs which have the genetic predisposition to develop a diet-induced metabolic syndrome, but before they had developed the diseased phenotype. Using a prospective study design, a reperfused acute myocardial infarction was induced in 62 lean Ossabaw minipigs by 60 min coronary occlusion and 180 min reperfusion. Ischaemic preconditioning by 3 cycles of 5 min coronary occlusion and 10 min reperfusion was used as cardioprotective intervention. Ossabaw minipigs were stratified for their single nucleotide polymorphism as homozygous for valine (V/V) or isoleucine (I/I)) in the γ-subunit of adenosine monophosphate-activated protein kinase. Endpoints were infarct size and area of no-reflow. Infarct size (V/V: 54 ± 8, I/I: 54 ± 13% of area at risk, respectively) was not reduced by ischaemic preconditioning (V/V: 55 ± 11, I/I: 46 ± 11%) nor was the area of no-reflow (V/V: 57 ± 18, I/I: 49 ± 21 vs. V/V: 57 ± 21, I/I: 47 ± 21% of infarct size). Bioinformatic comparison of the Ossabaw genome to that of Sus scrofa and Göttingen minipigs identified differences in clusters of genes encoding mitochondrial and inflammatory proteins, including the janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. The phosphorylation of STAT3 at early reperfusion was not increased by ischaemic preconditioning, different from the established STAT3 activation by cardioprotective interventions in other pig strains. Ossabaw pigs have not only the genetic predisposition to develop a metabolic syndrome but also are not amenable to cardioprotection by ischaemic preconditioning.
  • Loading...
    Thumbnail Image
    Item
    Remote ischemic conditioning in Ossabaw minipigs induces the release of humoral cardioprotective triggers, but the myocardium does not respond with reduced infarct size
    (American Physiological Society, 2022) Lieder, Helmut Raphael; Skyschally, Andreas; Sturek, Michael; Heusch, Gerd; Kleinbongard, Petra; Anatomy, Cell Biology and Physiology, School of Medicine
    Ischemic preconditioning (IPC; brief cycles of coronary occlusion/reperfusion) is operative in all species tested so far and reduces infarct size through the release of trigger molecules and activation of signal transducer and activator of transcription (STAT)3 in pigs. We have recently demonstrated that IPC failed to protect Ossabaw minipigs, which had a genetic predisposition to, but not yet established a metabolic syndrome, from infarction and did not activate STAT3. We now subjected Ossabaw minipigs to remote ischemic conditioning (RIC; 4 × 5 min/5 min bilateral hindlimb ischemia-reperfusion) and analyzed the release of cardioprotective triggers into the circulation with the aim to distinguish whether IPC failed to stimulate trigger release or to activate intracellular signaling cascades upstream of STAT3. RIC or a placebo protocol, respectively, was induced in anesthetized pigs before 60 min/180 min coronary occlusion/reperfusion. Plasma, prepared from Ossabaw minipigs after RIC or placebo, was infused into isolated rat hearts subjected to 30 min/120 min global ischemia-reperfusion. In the Ossabaw minipigs, RIC did not reduce infarct size (49.5 ± 12.1 vs. 56.0 ± 11.8% of area at risk with placebo), and STAT3 was not activated. In isolated rat hearts, infusion of RIC plasma reduced infarct size (19.7 ± 6.7 vs. 33.2 ± 5.5% of ventricular mass with placebo) and activated STAT3. Pretreatment of rat hearts with the STAT3 inhibitor stattic abrogated such infarct size reduction and STAT3 activation. In conclusion, Ossabaw minipigs release cardioprotective triggers in response to RIC into the circulation, and lack of cardioprotection is attributed to myocardial nonresponsiveness. NEW & NOTEWORTHY: Ischemic conditioning reduces myocardial infarct size in all species tested so far. In the present study, we used Ossabaw minipigs that had a genetic predisposition to, but not yet established a metabolic syndrome. In these pigs, remote ischemic conditioning (RIC) induced the release of cardioprotective triggers but did not reduce infarct size. Transfer of their plasma, however, reduced infarct size in isolated recipient rat hearts, along with signal transducer and activator of transcription (STAT)3 activation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University