ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Liao, Xiayi"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Myosin Nanomotor Essential for Stereocilia Maintenance Exp 1 ands the Etiology of 2 Hereditary Hearing Loss DFNB3
    (bioRxiv, 2025-02-21) Behnammanesh, Ghazaleh; Dragich, Abigail K.; Liao, Xiayi; Hadi, Shadan; Kim, Mi-Jung; Perrin, Benjamin; Someya, Shinichi; Frolenkov, Gregory I.; Bird, Jonathan E.; Biology, School of Science
    Cochlear hair cells transduce sound using stereocilia, and disruption to these delicate mechanosensors is a significant cause of hearing loss. Stereocilia architecture is dependent upon the nanomotor myosin 15. A short isoform (MYO15A-2) drives stereocilia development by delivering an elongation-promoting complex (EC) to stereocilia tips, and an alternatively spliced long isoform (MYO15A-1) tunes postnatal size in shorter stereocilia, which possess mechanosensitive ion channels. Disruption of these functions causes two distinct stereocilia pathologies, which underly human autosomal recessive non-syndromic hearing loss DFNB3. Here, we characterize a new isoform, MYO15A-3, that increases expression in postnatal hair cells as the developmental MYO15A-2 isoform wanes reciprocally. We show the critical EC complex is initially delivered by MYO15A-2, followed by a postnatal handover to MYO15A-3, which continues to deliver the EC. In a Myo15a-3 mutant mouse, stereocilia develop normally with correct EC targeting, but lack the EC postnatally and do not maintain their adult architecture, leading to progressive hearing loss. We conclude MYO15A-3 delivers the EC in postnatal hair cells and that the EC and MYO15A-3 are both required to maintain stereocilia integrity. Our results add to the spectrum of stereocilia pathology underlying DFNB3 hearing loss and reveal new molecular mechanisms necessary for resilient hearing during adult life.
  • Loading...
    Thumbnail Image
    Item
    Actin at stereocilia tips is regulated by mechanotransduction and ADF/cofilin
    (Elsevier, 2021-03) McGrath, Jamis; Tung, Chun-Yu; Liao, Xiayi; Belyantseva, Inna A.; Roy, Pallabi; Chakraborty, Oisorjo; Li, Jinan; Berbari, Nicolas F.; Faaborg-Andersen, Christian C.; Barzik, Melanie; Bird, Jonathan E.; Zhao, Bo; Balakrishnan, Lata; Friedman, Thomas B.; Perrin, Benjamin J.; Biology, School of Science
    Stereocilia on auditory sensory cells are actin-based protrusions that mechanotransduce sound into an electrical signal. These stereocilia are arranged into a bundle with three rows of increasing length to form a staircase-like morphology that is required for hearing. Stereocilia in the shorter rows, but not the tallest row, are mechanotransducing because they have force-sensitive channels localized at their tips. The onset of mechanotransduction during mouse postnatal development refines stereocilia length and width. However, it is unclear how actin is differentially regulated between stereocilia in the tallest row of the bundle and the shorter, mechanotransducing rows. Here, we show actin turnover is increased at the tips of mechanotransducing stereocilia during bundle maturation. Correspondingly, from birth to postnatal day 6, these stereocilia had increasing amounts of available actin barbed ends, where monomers can be added or lost readily, as compared with the non-mechanotransducing stereocilia in the tallest row. The increase in available barbed ends depended on both mechanotransduction and MYO15 or EPS8, which are required for the normal specification and elongation of the tallest row of stereocilia. We also found that loss of the F-actin-severing proteins ADF and cofilin-1 decreased barbed end availability at stereocilia tips. These proteins enriched at mechanotransducing stereocilia tips, and their localization was perturbed by the loss of mechanotransduction, MYO15, or EPS8. Finally, stereocilia lengths and widths were dysregulated in Adf and Cfl1 mutants. Together, these data show that actin is remodeled, likely by a severing mechanism, in response to mechanotransduction.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University