- Browse by Author
Browsing by Author "Li, Jun"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Activation of the Hedgehog signaling pathway leads to fibrosis in aortic valves(BMC, 2023-03-02) Gu, Dongsheng; Soepriatna, Arvin H.; Zhang, Wenjun; Li, Jun; Zhao, Jenny; Zhang, Xiaoli; Shu, Xianhong; Wang, Yongshi; Landis, Benjamin J.; Goergen, Craig J.; Xie, Jingwu; Pediatrics, School of MedicineBackground: Fibrosis is a pathological wound healing process characterized by excessive extracellular matrix deposition, which interferes with normal organ function and contributes to ~ 45% of human mortality. Fibrosis develops in response to chronic injury in nearly all organs, but the a cascade of events leading to fibrosis remains unclear. While hedgehog (Hh) signaling activation has been associated with fibrosis in the lung, kidney, and skin, it is unknown whether hedgehog signaling activation is the cause or the consequence of fibrosis. We hypothesize that activation of hedgehog signaling is sufficient to drive fibrosis in mouse models. Results: In this study, we provide direct evidence to show that activation of Hh signaling via expression of activated smoothened, SmoM2, is sufficient to induce fibrosis in the vasculature and aortic valves. We showed that activated SmoM2 -induced fibrosis is associated with abnormal function of aortic valves and heart. The relevance of this mouse model to human health is reflected in our findings that elevated GLI expression is detected in 6 out of 11 aortic valves from patients with fibrotic aortic valves. Conclusions: Our data show that activating hedgehog signaling is sufficient to drive fibrosis in mice, and this mouse model is relevant to human aortic valve stenosis.Item Aggressive breast cancer in western Kenya has early onset, high proliferation, and immune cell infiltration(Biomed Central, 2016-03) Sawe, Rispah T.; Kerper, Maggie; Badve, Sunil S.; Li, Jun; Sandoval-Cooper, Mayra; Xie, Jingmeng; Shi, Zonggao; Patel, Kirtika; Chumba, David; Ofulla, Ayub; Prosperi, Jenifer; Taylor, Katherine; Stack, M. Sharon; Mining, Simeon; Littlepage, Laurie E.; Pathology and Laboratory Medicine, School of MedicineBackground Breast cancer incidence and mortality vary significantly among different nations and racial groups. African nations have the highest breast cancer mortality rates in the world, even though the incidence rates are below those of many nations. Differences in disease progression suggest that aggressive breast tumors may harbor a unique molecular signature to promote disease progression. However, few studies have investigated the pathology and clinical markers expressed in breast tissue from regional African patient populations. Methods We collected 68 malignant and 89 non-cancerous samples from Kenyan breast tissue. To characterize the tumors from these patients, we constructed tissue microarrays (TMAs) from these tissues. Sections from these TMAs were stained and analyzed using immunohistochemistry to detect clinical breast cancer markers, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 receptor (HER2) status, Ki67, and immune cell markers. Results Thirty-three percent of the tumors were triple negative (ER-, PR-, HER2-), 59 % were ER+, and almost all tumors analyzed were HER2-. Seven percent of the breast cancer patients were male, and 30 % were <40 years old at diagnosis. Cancer tissue had increased immune cell infiltration with recruitment of CD163+ (M2 macrophage), CD25+ (regulatory T lymphocyte), and CD4+ (T helper) cells compared to non-cancer tissue. Conclusions We identified clinical biomarkers that may assist in identifying therapy strategies for breast cancer patients in western Kenya. Estrogen receptor status in particular should lead initial treatment strategies in these breast cancer patients. Increased CD25 expression suggests a need for additional treatment strategies designed to overcome immune suppression by CD25+ cells in order to promote the antitumor activity of CD8+ cytotoxic T cells.Item Chambers in the symplectic cone and stability of symplectomorphism group for ruled surface(arXiv, 2022-02-14) Buse, Olguta; Li, Jun; Mathematical Sciences, School of ScienceWe continue our previous work to prove that for any non-minimal ruled surface $(M,\omega)$, the stability under symplectic deformations of $\pi_0, \pi_1$ of $Symp(M,\omega)$ is guided by embedded $J$-holomorphic curves. Further, we prove that for any fixed sizes blowups, when the area ratio $\mu$ between the section and fiber goes to infinity, there is a topological colimit of $Symp(M,\omega_{\mu}).$ Moreover, when the blowup sizes are all equal to half the area of the fiber class, we give a topological model of the colimit which induces non-trivial symplectic mapping classes in $Symp(M,\omega) \cap \rm Diff_0(M),$ where $\rm Diff_0(M)$ is the identity component of the diffeomorphism group. These mapping classes are not Dehn twists along Lagrangian spheres.Item CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10(Cell Press, 2020) Guldner, Ian H.; Wang, Qingfei; Yang, Lin; Golomb, Samantha M.; Zhao, Zhuo; Lopez, Jacqueline A.; Brunory, Abigail; Howe, Erin N.; Zhang, Yizhe; Palakurthi, Bhavana; Barron, Martin; Gao, Hongyu; Xuei, Xiaoling; Liu, Yunlong; Li, Jun; Chen, Danny Z.; Landreth, Gary E.; Zhang, Siyuan; Medical and Molecular Genetics, School of MedicineBrain metastasis (br-met) develops in an immunologically unique br-met niche. Central nervous system-native myeloid cells (CNS-myeloids) and bone-marrow-derived myeloid cells (BMDMs) cooperatively regulate brain immunity. The phenotypic heterogeneity and specific roles of these myeloid subsets in shaping the br-met niche to regulate br-met outgrowth have not been fully revealed. Applying multimodal single-cell analyses, we elucidated a heterogeneous but spatially defined CNS-myeloid response during br-met outgrowth. We found Ccr2+ BMDMs minimally influenced br-met while CNS-myeloid promoted br-met outgrowth. Additionally, br-met-associated CNS-myeloid exhibited downregulation of Cx3cr1. Cx3cr1 knockout in CNS-myeloid increased br-met incidence, leading to an enriched interferon response signature and Cxcl10 upregulation. Significantly, neutralization of Cxcl10 reduced br-met, while rCxcl10 increased br-met and recruited VISTAHi PD-L1+ CNS-myeloid to br-met lesions. Inhibiting VISTA- and PD-L1-signaling relieved immune suppression and reduced br-met burden. Our results demonstrate that loss of Cx3cr1 in CNS-myeloid triggers a Cxcl10-mediated vicious cycle, cultivating a br-met-promoting, immune-suppressive niche.Item Intrahepatic HBV DNA as a predictor of antivirus treatment efficacy in HBeAg-positive chronic hepatitis B patients(Baishideng Publishing Group, 2007-05-28) Lu, Hai-Ying; Zhuang, Li-Wei; Yu, Yan-Yan; Ivan, Hadad; Si, Chong-Wen; Zeng, Zheng; Li, Jun; Hou, Dong-Ming; Chen, Xin-Yue; Han, Zhong-Hou; Chen, Yong; Department of Medicine, IU School of MedicineAIM: To evaluate the effect of antiviral agents on intrahepatic HBV DNA in HBeAg-positive chronic hepatitis B patients. METHODS: Seventy-one patients received treatment with lamivudine, interferon alpha (IFN-alpha 2b) or sequential therapy with lamivudine-IFN-alpha 2b for 48 wk. All subjects were followed up for 24 wk. Serum and intrahepatic HBV DNA were measured quantitatively by PCR. HBV genotypes were analyzed by PCR-RFLP. RESULTS: At the end of treatment, the intrahepatic HBV DNA level in 71 patients decreased from a mean of (6.1 +/- 1.0) log10 to (4.9 +/- 1.4) log10. Further, a larger decrease was seen in the intrahepatic HBV DNA level in patients with HBeAg seroconversion. Intrahepatic HBV DNA level (before and after treatment) was not significantly affected by the patients' HBV genotype, or by the probability of virological flare after treatment. CONCLUSION: Intrahepatic HBV DNA can be effectively lowered by antiviral agents and is a significant marker for monitoring antivirus treatment. Low intrahepatic HBV DNA level may achieve better efficacy of antivirus treatment.Item Ketogenic diet alters the epigenetic and immune landscape of prostate cancer to overcome resistance to immune checkpoint blockade therapy(American Association for Cancer Research, 2024) Murphy, Sean; Rahmy, Sharif; Gan, Dailin; Liu, Guoqiang; Zhu, Yini; Manyak, Maxim; Duong, Loan; He, Jianping; Schofield, James H.; Schafer, Zachary T.; Li, Jun; Lu, Xuemin; Lu, Xin; Medicine, School of MedicineResistance to immune checkpoint blockade (ICB) therapy represents a formidable clinical challenge limiting the efficacy of immunotherapy. In particular, prostate cancer poses a challenge for ICB therapy due to its immunosuppressive features. A ketogenic diet (KD) has been reported to enhance response to ICB therapy in some other cancer models. However, adverse effects associated with continuous KD were also observed, demanding better mechanistic understanding and optimized regimens for using KD as an immunotherapy sensitizer. In this study, we established a series of ICB-resistant prostate cancer cell lines and developed a highly effective strategy of combining anti-PD1 and anti-CTLA4 antibodies with histone deacetylase inhibitor (HDACi) vorinostat, a cyclic KD (CKD), or dietary supplementation of the ketone body β-hydroxybutyrate (BHB), which is an endogenous HDACi. CKD and BHB supplementation each delayed prostate cancer tumor growth as monotherapy, and both BHB and adaptive immunity were required for the antitumor activity of CKD. Single-cell transcriptomic and proteomic profiling revealed that HDACi and ketogenesis enhanced ICB efficacy through both cancer cell-intrinsic mechanisms, including upregulation of MHC class I molecules, and -extrinsic mechanisms, such as CD8+ T-cell chemoattraction, M1/M2 macrophage rebalancing, monocyte differentiation toward antigen-presenting cells, and diminished neutrophil infiltration. Overall, these findings illuminate a potential clinical path of using HDACi and optimized KD regimens to enhance ICB therapy for prostate cancer. Significance: Optimized cyclic ketogenic diet and 1,3-butanediol supplementation regimens enhance the efficacy of immune checkpoint blockade in prostate cancer through epigenetic and immune modulations, providing dietary interventions to sensitize tumors to immunotherapy.Item Neutrophils Resist Ferroptosis and Promote Breast Cancer Metastasis through Aconitate Decarboxylase 1(Elsevier, 2023) Zhao, Yun; Liu, Zhongshun; Liu, Guoqiang; Zhang, Yuting; Liu, Sheng; Gan, Dailin; Chang, Wennan; Peng, Xiaoxia; Sung, Eun Suh; Gilbert, Keegan; Zhu, Yini; Wang, Xuechun; Zeng, Ziyu; Baldwin, Hope; Ren, Guanzhu; Weaver, Jessica; Huron, Anna; Mayberry, Toni; Wang, Qingfei; Wang, Yujue; Diaz-Rubio, Maria Elena; Su, Xiaoyang; Stack, M. Sharon; Zhang, Siyuan; Lu, Xuemin; Sheldon, Ryan D.; Li, Jun; Zhang, Chi; Wan, Jun; Lu, Xin; Medical and Molecular Genetics, School of MedicineMetastasis causes breast cancer-related mortality. Tumor-infiltrating neutrophils (TINs) inflict immunosuppression and promote metastasis. Therapeutic debilitation of TINs may enhance immunotherapy, yet it remains a challenge to identify therapeutic targets highly expressed and functionally essential in TINs but under-expressed in extra-tumoral neutrophils. Here, using single-cell RNA sequencing to compare TINs and circulating neutrophils in murine mammary tumor models, we identified aconitate decarboxylase 1 (Acod1) as the most upregulated metabolic enzyme in mouse TINs and validated high Acod1 expression in human TINs. Activated through the GM-CSF-JAK/STAT5-C/EBPβ pathway, Acod1 produces itaconate, which mediates Nrf2-dependent defense against ferroptosis and upholds the persistence of TINs. Acod1 ablation abates TIN infiltration, constrains metastasis (but not primary tumors), bolsters antitumor T cell immunity, and boosts the efficacy of immune checkpoint blockade. Our findings reveal how TINs escape from ferroptosis through the Acod1-dependent immunometabolism switch and establish Acod1 as a target to offset immunosuppression and improve immunotherapy against metastasis.Item Notch signaling regulates Hey2 expression in a spatiotemporal dependent manner during cardiac morphogenesis and trabecular specification(Nature Publishing Group, 2018-02-08) Miao, Lianjie; Li, Jingjing; Li, Jun; Tian, Xueying; Lu, Yangyang; Hu, Saiyang; Shieh, David; Kanai, Ryan; Zhou, Bo-yang; Zhou, Bin; Liu, Jiandong; Firulli, Anthony B.; Martin, James F.; Singer, Harold; Zhou, Bin; Xin, Hongbo; Wu, Mingfu; Pediatrics, School of MedicineHey2 gene mutations in both humans and mice have been associated with multiple cardiac defects. However, the currently reported localization of Hey2 in the ventricular compact zone cannot explain the wide variety of cardiac defects. Furthermore, it was reported that, in contrast to other organs, Notch doesn't regulate Hey2 in the heart. To determine the expression pattern and the regulation of Hey2, we used novel methods including RNAscope and a Hey2 CreERT2 knockin line to precisely determine the spatiotemporal expression pattern and level of Hey2 during cardiac development. We found that Hey2 is expressed in the endocardial cells of the atrioventricular canal and the outflow tract, as well as at the base of trabeculae, in addition to the reported expression in the ventricular compact myocardium. By disrupting several signaling pathways that regulate trabeculation and/or compaction, we found that, in contrast to previous reports, Notch signaling and Nrg1/ErbB2 regulate Hey2 expression level in myocardium and/or endocardium, but not its expression pattern: weak expression in trabecular myocardium and strong expression in compact myocardium. Instead, we found that FGF signaling regulates the expression pattern of Hey2 in the early myocardium, and regulates the expression level of Hey2 in a Notch1 dependent manner.Item A novel intraperitoneal metastatic xenograft mouse model for survival outcome assessment of esophageal adenocarcinoma(Plos, 2017-02-22) Hassan, Md Sazzad; Awasthi, Niranjan; Li, Jun; Schwarz, Margaret A.; Schwarz, Roderich E.; von Holzen, Urs; Department of Surgery, IU School of MedicineEsophageal adenocarcinoma (EAC) has become the dominant type of esophageal cancer in United States. The 5-year survival rate of EAC is below 20% and most patients present with locally advanced or widespread metastatic disease, where current treatment is largely ineffective. Therefore, new therapeutic approaches are urgently needed. Improvement of EAC patient outcome requires well-characterized animal models in which to evaluate novel therapeutics. In this study we aimed to establish a peritoneal dissemination xenograft mouse model of EAC that would support survival outcome analyses. To find the best candidate cell line from 7 human EAC cell lines of different origin named ESO26, OE33, ESO51, SK-GT-2, OE19, OACM5.1C and Flo-1 were injected intraperitoneally/subcutaneously into SCID mice. The peritoneal/xenograft tumor formation and mouse survival were compared among different groups. All cell lines injected subcutaneously formed tumors within 3 months at variable rates. All cell lines except OACM5.1C formed intraperitoneal tumors within 3 months at variable rates. Median animal survival with peritoneal dissemination was 108 days for ESO26 cells (5X106), 65 days for OE33 cells (5X106), 88 days for ESO51 cells (5X106), 76 days for SK-GT-2 cells (5X106), 55 days for OE19 cells (5X106), 45 days for OE19 cells (10X106) and 82 days for Flo-1 cells (5X106). Interestingly, only in the OE19 model all mice (7/7 for 5X106 and 5/5 for10X106) developed bloody ascites with liver metastasis after intraperitoneal injection. The median survival time of these animals was the shortest (45 days for 10X106 cells). In addition, median survival was significantly increased after paclitaxel treatment compared with the control group (57 days versus 45 days, p = 0.0034) along with a significant decrease of the relative subcutaneous tumor volume (p = 0.00011). Thus peritoneal dissemination mouse xenograft model for survival outcome assessment after intraperitoneal injection of OE19 cells will be very useful for the evaluation of cancer therapeutics.Item Protein Signature Differentiating Neutrophils and Myeloid-Derived Suppressor Cells Determined Using a Human Isogenic Cell Line Model and Protein Profiling(MDPI, 2024-05-07) Zhang, Yuting; Hu, Jin; Zhang, Xiashiyao; Liang, Minzhi; Wang, Xuechun; Gan, Dailin; Li, Jun; Lu, Xuemin; Wan, Jun; Feng, Shan; Lu, Xin; Medical and Molecular Genetics, School of MedicineMyeloid-derived suppressor cells (MDSCs) play an essential role in suppressing the antitumor activity of T lymphocytes in solid tumors, thus representing an attractive therapeutic target to enhance the efficacy of immunotherapy. However, the differences in protein expression between MDSCs and their physiological counterparts, particularly polymorphonuclear neutrophils (PMNs), remain inadequately characterized, making the specific identification and targeting of MDSCs difficult. PMNs and PMN-MDSCs share markers such as CD11b+CD14−CD15+/CD66b+, and some MDSC-enriched markers are emerging, such as LOX-1 and CD84. More proteomics studies are needed to identify the signature and markers for MDSCs. Recently, we reported the induced differentiation of isogenic PMNs or MDSCs (referred to as iPMNs and iMDSCs, respectively) from the human promyelocytic cell line HL60. Here, we profiled the global proteomics and membrane proteomics of these cells with quantitative mass spectrometry, which identified a 41-protein signature (“cluster 6”) that was upregulated in iMDSCs compared with HL60 and iPMN. We further integrated our cell line-based proteomics data with a published proteomics dataset of normal human primary monocytes and monocyte-derived MDSCs induced by cancer-associated fibroblasts. The analysis identified a 38-protein signature that exhibits an upregulated expression pattern in MDSCs compared with normal monocytes or PMNs. These signatures may provide a hypothesis-generating platform to identify protein biomarkers that phenotypically distinguish MDSCs from their healthy counterparts, as well as potential therapeutic targets that impair MDSCs without harming normal myeloid cells.