- Browse by Author
Browsing by Author "Li, Ge"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Association of cerebrospinal fluid Aβ42 with A2M gene in cognitively normal subjects(Elsevier, 2014-02) Millard, Steven P.; Lutz, Franziska; Li, Ge; Galasko, Douglas R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby; Yu, Chang-En; Peskind, Elaine R.; Bekris, Lynn M.; Department of Neurology, IU School of MedicineLow cerebrospinal fluid (CSF) Aβ42 levels correlate with increased brain Aβ deposition in Alzheimer’s disease (AD), which suggests a disruption in the degradation and clearance of Aβ from the brain. In addition, APOE ε4 carriers have lower CSF Aβ42 levels than non-carriers. The hypothesis of this investigation was that CSF Aβ42 levels correlate with regulatory region variation in genes that are biologically associated with degradation or clearance of Aβ from the brain. CSF Aβ42 levels were tested for associations with Aβ degradation and clearance genes and APOE ε4. Twenty-four SNPs located within the 5′ and 3′ regions of 12 genes were analyzed. The study sample consisted of 99 AD patients and 168 cognitively normal control subjects. CSF Aβ42 levels were associated with APOE ε4 status in controls but not in AD patientsItem Checkpoint kinase 2 controls insulin secretion and glucose homeostasis(Springer Nature, 2024) Chong, Angie Chi Nok; Vandana, J. Jeya; Jeng, Ginnie; Li, Ge; Meng, Zihe; Duan, Xiaohua; Zhang, Tuo; Qiu, Yunping; Duran-Struuck, Raimon; Coker, Kimberly; Wang, Wei; Li, Yanjing; Min, Zaw; Zuo, Xi; de Silva, Neranjan; Chen, Zhengming; Naji, Ali; Hao, Mingming; Liu, Chengyang; Chen, Shuibing; Urology, School of MedicineAfter the discovery of insulin, a century ago, extensive work has been done to unravel the molecular network regulating insulin secretion. Here we performed a chemical screen and identified AZD7762, a compound that potentiates glucose-stimulated insulin secretion (GSIS) of a human β cell line, healthy and type 2 diabetic (T2D) human islets and primary cynomolgus macaque islets. In vivo studies in diabetic mouse models and cynomolgus macaques demonstrated that AZD7762 enhances GSIS and improves glucose tolerance. Furthermore, genetic manipulation confirmed that ablation of CHEK2 in human β cells results in increased insulin secretion. Consistently, high-fat-diet-fed Chk2-/- mice show elevated insulin secretion and improved glucose clearance. Finally, untargeted metabolic profiling demonstrated the key role of the CHEK2-PP2A-PLK1-G6PD-PPP pathway in insulin secretion. This study successfully identifies a previously unknown insulin secretion regulating pathway that is conserved across rodents, cynomolgus macaques and human β cells in both healthy and T2D conditions.Item Genome-wide association study identifies four novel loci associated with Alzheimer's endophenotypes and disease modifiers(Springer Verlag, 2017-05) Deming, Yuetiva; Li, Zeran; Kapoor, Manav; Harari, Oscar; Del-Aguila, Jorge L.; Black, Kathleen; Carrell, David; Cai, Yefei; Fernandez, Maria Victoria; Budde, John; Ma, Shengmei; Saef, Benjamin; Howells, Bill; Huang, Kuanlin; Bertelsen, Sarah; Fagan, Anne M.; Holtzman, David M.; Morris, John C.; Kim, Sungeun; Saykin, Andrew J.; De Jager, Philip L.; Albert, Marilyn; Moghekar, Abhay; O’Brien, Richard; Riemenschneider, Matthias; Petersen, Ronald C.; Blennow, Kaj; Zetterberg, Henrik; Minthon, Lennart; Van Deerlin, Vivianna M.; Lee, Virginia Man-Yee; Shaw, Leslie M.; Trojanowski, John Q.; Schellenberg, Gerard; Haines, Jonathan L.; Mayeux, Richard; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Peskind, Elaine R.; Li, Ge; Di Narzo, Antonio F.; Alzheimer’s Disease Neuroimaging Initiative (ADGC). The Alzheimer Disease Genetic Consortium (ADGC); Kauwe, John S. K.; Goate, Alison M.; Cruchaga, Carlos; Medicine, School of MedicineMore than 20 genetic loci have been associated with risk for Alzheimer's disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case-control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aβ42 near GLIS1 on 1p32.3 (β = -0.059, P = 2.08 × 10-8) and within SERPINB1 on 6p25 (β = -0.025, P = 1.72 × 10-8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10-2), disease progression (GLIS1: β = 0.277, P = 1.92 × 10-2), and age at onset (SERPINB1: β = 0.043, P = 4.62 × 10-3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aβ42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform future AD studies.Item Sex Differences in Basal Cortisol Levels Across Body Fluid Compartments in a Cross-sectional Study of Healthy Adults(Oxford University Press, 2024-12-05) Liang, Katharine J.; Colasurdo, Elizabeth A.; Li, Ge; Shofer, Jane B.; Galasko, Douglas; Quinn, Joseph F.; Farlow, Martin R.; Peskind, Elaine R.; Neurology, School of MedicineContext: Many studies have moved toward saliva and peripheral blood sampling for studying cortisol, even in relation to disorders of the brain. However, the degree to which peripheral cortisol reflects central cortisol levels has yet to be comprehensively described. Data describing the effect that biological characteristics such as age and sex have on cortisol levels across compartments is also limited. Objective: To assess the relationships of cortisol levels across cerebrospinal fluid (CSF), saliva, and plasma (total and free) compartments and describe the effects of age and sex on these relationships. Design: Multisite cross-sectional observation study. Setting: Samples collected in academic outpatient settings in 2001-2004. Patients or other participants: Healthy community volunteers (n = 157) of both sexes, aged 20-85 years. Interventions: None. Main outcome measures: This study was a secondary analysis of data collected from a previously published study. Results: CSF cortisol correlated more strongly with plasma (r = 0.49, P < .0001) than with saliva cortisol levels. Sex but not age was a significant modifier of these relationships. CSF cortisol levels trended higher with older age in men (R2 = 0.31, P < .001) but not women. Age-related cortisol binding globulin trends differed by sex but did not correlate with sex differences in cortisol levels in any compartment. Conclusion: Variability in the correlations between central and peripheral cortisol discourages the use of peripheral cortisol as a direct surrogate for central cortisol measures. Further investigation of how mechanistic drivers interact with biological factors such as sex will be necessary to fully understand the dynamics of cortisol regulation across fluid compartments.