- Browse by Author
Browsing by Author "Li, Zhaomin"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item 14-3-3σ Contributes to Radioresistance by Regulating DNA Repair and Cell Cycle via PARP1 and CHK2(AACR, 2017) Chen, Yifan; Li, Zhaomin; Dong, Zizheng; Beebe, Jenny; Yang, Ke; Fu, Liwu; Zhang, Jian-Ting; Department of Pharmacology and Toxicology, IU School of Medicine14-3-3σ has been implicated in the development of chemo and radiation resistance and in poor prognosis of multiple human cancers. While it has been postulated that 14-3-3σ contributes to these resistances via inhibiting apoptosis and arresting cells in G2–M phase of the cell cycle, the molecular basis of this regulation is currently unknown. In this study, we tested the hypothesis that 14-3-3σ causes resistance to DNA-damaging treatments by enhancing DNA repair in cells arrested in G2–M phase following DNA-damaging treatments. We showed that 14-3-3σ contributed to ionizing radiation (IR) resistance by arresting cancer cells in G2–M phase following IR and by increasing non-homologous end joining (NHEJ) repair of the IR-induced DNA double strand breaks (DSB). The increased NHEJ repair activity was due to 14-3-3σ–mediated upregulation of PARP1 expression that promoted the recruitment of DNA-PKcs to the DNA damage sites for repair of DSBs. On the other hand, the increased G2–M arrest following IR was due to 14-3-3σ–induced Chk2 expression. Implications: These findings reveal an important molecular basis of 14-3-3σ function in cancer cell resistance to chemo/radiation therapy and in poor prognosis of human cancers.Item ASXL1 interacts with the cohesin complex to maintain chromatid separation and gene expression for normal hematopoiesis(American Association for the Advancement of Science, 2017-01-20) Li, Zhaomin; Zhang, Peng; Yan, Aimin; Guo, Zhengyu; Ban, Yuguang; Li, Jin; Chen, Shi; Yang, Hui; He, Yongzheng; Li, Jianping; Guo, Ying; Zhang, Wen; Hajiramezanali, Ehsan; An, Huangda; Fajardo, Darlene; Harbour, J. William; Ruan, Yijun; Nimer, Stephen D.; Yu, Peng; Chen, Xi; Xu, Mingjiang; Yang, Feng-Chun; Department of Pediatrics, IU School of MedicineASXL1 is frequently mutated in a spectrum of myeloid malignancies with poor prognosis. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice; however, the underlying molecular mechanisms remain unclear. We report that ASXL1 interacts with the cohesin complex, which has been shown to guide sister chromatid segregation and regulate gene expression. Loss of Asxl1 impairs the cohesin function, as reflected by an impaired telophase chromatid disjunction in hematopoietic cells. Chromatin immunoprecipitation followed by DNA sequencing data revealed that ASXL1, RAD21, and SMC1A share 93% of genomic binding sites at promoter regions in Lin-cKit+ (LK) cells. We have shown that loss of Asxl1 reduces the genome binding of RAD21 and SMC1A and alters the expression of ASXL1/cohesin target genes in LK cells. Our study underscores the ASXL1-cohesin interaction as a novel means to maintain normal sister chromatid separation and regulate gene expression in hematopoietic cells.Item Determinants of 14-3-3σ dimerization and function in drug and radiation resistance(2013-11) Li, Zhaomin; Peng, Hui; Qin, Li; Qi, Jing; Zuo, Xiaobing; Liu, Jing-Yuan; Zhang, Jian-Ting; Department of Pharmacology and Toxicology, IU School of MedicineMany proteins exist and function as homodimers. Understanding the detailed mechanism driving the homodimerization is important and will impact future studies targeting the “undruggable” oncogenic protein dimers. In this study, we used 14-3-3σ as a model homodimeric protein and performed a systematic investigation of the potential roles of amino acid residues in the interface for homodimerization. Unlike other members of the conserved 14-3-3 protein family, 14-3-3σ prefers to form a homodimer with two subareas in the dimeric interface that has 180° symmetry. We found that both subareas of the dimeric interface are required to maintain full dimerization activity. Although the interfacial hydrophobic core residues Leu12 and Tyr84 play important roles in 14-3-3σ dimerization, the non-core residue Phe25 appears to be more important in controlling 14-3-3σ dimerization activity. Interestingly, a similar non-core residue (Val81) is less important than Phe25 in contributing to 14-3-3σ dimerization. Furthermore, dissociating dimeric 14-3-3σ into monomers by mutating the Leu12, Phe25, or Tyr84 dimerization residue individually diminished the function of 14-3-3σ in resisting drug-induced apoptosis and in arresting cells at G2/M phase in response to DNA-damaging treatment. Thus, dimerization appears to be required for the function of 14-3-3σ.Item Human ABCC1 Interacts and Colocalizes with ATP Synthase α, Revealed by Interactive Proteomics Analysis(American Chemical Society, 2012-02-03) Yang, Youyun; Li, Zhaomin; Mo, Wei; Ambadipudi, Raghuram; Arnold, Randy J.; Hrncirova, Petra; Novotny, Milos V.; Georges, Elias; Zhang, Jian-Ting; Pharmacology and Toxicology, School of MedicineHuman ABCC1 is a member of the ATP-binding cassette (ABC) transporter superfamily, and its overexpression has been shown to cause multidrug resistance by active efflux of a wide variety of anticancer drugs. ABCC1 has been shown to exist and possibly function as a homodimer. However, a possible heterocomplex involving ABCC1 has been indicated. In this study, we performed an interactive proteomics study to examine proteins that bind to and form heterocomplexes with ABCC1 using coimmunoprecipitation and tandem mass spectrometry (MS/MS) analyses. We found that ATP synthase α binds to ABCC1 in plasma membranes with a ratio of 2:1. The ATP synthase α binding site in ABCC1 is located in the linker domain at the carboxyl core of ABCC1, and phosphorylation of the linker domain at the protein kinase A site enhances ATP synthase α binding. The interaction between ABCC1 and ATP synthase α in a heterocomplex may indicate a novel function of ABCC1 in regulating extracellular ATP level and purinergic signaling cascade.Item Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice(Elsevier, 2016-06-14) Zhang, Peng; Xing, Caihong; Rhodes, Steven D.; He, Yongzheng; Deng, Kai; Li, Zhaomin; He, Fuhong; Zhu, Caiying; Nguyen, Lihn; Zhou, Yuan; Chen, Shi; Mohammad, Khalid S.; Guise, Theresa A.; Abdel-Wahab, Omar; Xu, Mingjiang; Wang, Qian-Fei; Yang, Feng-Chun; Department of Pediatrics, IU School of MedicineDe novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs) compared with wild-type littermates. Asxl1(-/-) BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1(-/-) BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development.Item Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice(American Society of Hematology, 2014-01-23) Wang, Jiapeng; Li, Zhaomin; He, Yongzheng; Pan, Feng; Chen, Shi; Rhodes, Steven; Nguyen, Lihn; Yuan, Jin; Jiang, Li; Yang, Xianlin; Weeks, Ophelia; Liu, Ziyue; Zhou, Jiehao; Ni, Hongyu; Cai, Chen-Leng; Xu, Mingjiang; Yang, Feng-Chun; Department of Biostatistics, School of Public HealthASXL1 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies, and its alterations are associated with poor prognosis. De novo ASXL1 mutations cause Bohring-Opitz syndrome characterized by multiple congenital malformations. We show that Asxl1 deletion in mice led to developmental abnormalities including dwarfism, anophthalmia, and 80% embryonic lethality. Surviving Asxl1(-/-) mice lived for up to 42 days and developed features of myelodysplastic syndrome (MDS), including dysplastic neutrophils and multiple lineage cytopenia. Asxl1(-/-) mice had a reduced hematopoietic stem cell (HSC) pool, and Asxl1(-/-) HSCs exhibited decreased hematopoietic repopulating capacity, with skewed cell differentiation favoring granulocytic lineage. Asxl1(+/-) mice also developed mild MDS-like disease, which could progress to MDS/myeloproliferative neoplasm, demonstrating a haploinsufficient effect of Asxl1 in the pathogenesis of myeloid malignancies. Asxl1 loss led to an increased apoptosis and mitosis in Lineage(-)c-Kit(+) (Lin(-)c-Kit(+)) cells, consistent with human MDS. Furthermore, Asxl1(-/-) Lin(-)c-Kit(+) cells exhibited decreased global levels of H3K27me3 and H3K4me3 and altered expression of genes regulating apoptosis (Bcl2, Bcl2l12, Bcl2l13). Collectively, we report a novel ASXL1 murine model that recapitulates human myeloid malignancies, implying that Asxl1 functions as a tumor suppressor to maintain hematopoietic cell homeostasis. Future work is necessary to clarify the contribution of microenvironment to the hematopoietic phenotypes observed in the constitutional Asxl1(-/-) mice.Item Nf1 haploinsufficiency alters myeloid lineage commitment and function, leading to deranged skeletal homeostasis(Wiley, 2015-10) Rhodes, Steven D.; Yang, Hao; Dong, Ruizhi; Menon, Keshav; He, Yongzheng; Li, Zhaomin; Chen, Shi; Staser, Karl W.; Jiang, Li; Department of Anatomy & Cell Biology, IU School of MedicineAlthough nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gains-in-function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1-Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras-dependent hyperphosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficient myelomonocytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations.