- Browse by Author
Browsing by Author "Li, Yue"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Contrasting water use characteristics of riparian trees under different water tables along a losing river(Elsevier, 2022-08) Li, Yue; Ma, Ying; Song, Xianfang; Wang, Lixin; Yang, Lihu; Li, Xiaoyan; Li, Binghua; Earth and Environmental Sciences, School of ScienceRivers losing flow into surrounding aquifers (‘losing’ rivers) are common under changing climates and groundwater overexploitation. The riparian plant-water relations under various water table dynamics along a losing river remain unclear. In this study, the water isotopes (δ2H and δ18O), leaf δ13C, and MixSIAR model were used combinedly for determining the root water uptake patterns and leaf water use efficiency (WUE) of Salix babylonica (L.) at three sites (A, B, and C) with different water table depths (WTDs) in the riparian zone of Jian and Chaobai River in Beijing, China. The correlations of water source contributions with WTD and WUE were quantified. The riparian S. babylonica primarily took up upper (0–80 cm) soil water (71.5%) with the lowest leaf δ13C (−28.8 ± 1.1 ‰) at site A under deep WTD (20.5 ± 0.5 m). In contrast, deep water below 80 cm depth including groundwater contributed 55.1% to S. babylonica at site B with fluctuated shallow WTD (1.9 ± 0.4 m), where leaf δ13C was highest (−27.9 ± 1.0 ‰). The S. babylonica mainly used soil water in 30–170 cm layer (56.9%) with mean leaf δ13C of − 28.2 ‰ ± 0.7 ‰ at site C with stable shallow WTD (1.5 ± 0.1 m). It was found that both the contributions of upper soil water in 0–80 cm and deep water below 80 cm had significantly quadratic correlations with WTD under shallow water table conditions (p < 0.05). Leaf δ13C was negatively correlated with contributions of upper soil water above 80 cm depth, but it was positively related to the contributions of deep water below 80 cm in linear functions (p < 0.001). The results indicated that 2.1 m was the optimum WTD for riparian trees, because they maximized the use of deep water sources to get the highest WUE. This study provides insights into managing groundwater, surface water resources and riparian afforestation in losing rivers.Item Impact of Innovative Technology-Related Interventions on K–12 Students' STEM Career-Related Outcomes: A Meta-Analysis(American Educational Research Association (AERA), 2022-04-21) Li, Yue; Dixon, Maressa; Jacobsen, Anna Liss; Maltbie, Anna; Woodruff, SarahThis meta-analysis study reviews and synthesizes research and evaluation findings demonstrating the effects of integrating innovative technologies and technology-based learning experiences in STEM education on K-12 students’ STEM career-related outcomes. This study synthesizes a body of research from 1995 to the present, across characteristics of technology-based STEM education interventions, learning contexts, student demographics, and study designs. This study develops an understanding of the extent to which the effects of technology-based STEM education interventions are different for students who are traditionally underserved and underrepresented in STEM education. Findings suggest such interventions have small, positive effects on students’ STEM career outcomes. Interventions serving underrepresented students had larger influences on students’ career outcomes than those serving general student populations.Item Integrating innovating technology into STEM learning: Preliminary findings from a Meta-Analysis on K-12 students’ STEM career interests(2023-10-19) Li, Yue; Dixon, Maressa; Qi, Kunting; Jacobsen, Anna Liss; Woodruff, SarahThis paper presents preliminary findings from a meta-analysis study that reviews and synthesizes studies related to the effects of innovative technology-related learning experiences in formal and informal K-12 STEM education on students’ STEM career-related outcomes. This meta-analysis synthesizes a body of research from 1995 to the present, across characteristics of technology-based STEM education interventions, learning contexts, student demographics, and study designs. Findings presented in this paper describe the characteristics of these innovative technology-related educational interventions, including intervention content, format, and setting, as well as their collective impact on students’ STEM career aspirations. Variables examined also include whether an intervention aimed at serving students from backgrounds that are traditionally underrepresented and underserved in STEM education and whether an intervention has an explicit career-exploration component. This paper sheds light on the diverse landscape of technology-related STEM education, offering valuable insights for educators, policymakers, and researchers striving to enhance students' pursuit of STEM careers.Item STAT6 and Furin Are Successive Triggers for the Production of TGF-β by T Cells(The American Association of Immunologists, Inc., 2018-11) Li, Yue; Liu, Weiren; Guan, Xiaqun; Truscott, Jamie; Creemers, John W.; Chen, Hung-Lin; Pesu, Marko; El Abiad, Rami G.; Karacay, Bahri; Urban, Joseph F.; Elliott, David E.; Kaplan, Mark H.; Blazar, Bruce R.; Ince, M. Nedim; Pediatrics, School of MedicineProduction of TGF-β by T cells is key to various aspects of immune homeostasis, with defects in this process causing or aggravating immune-mediated disorders. The molecular mechanisms that lead to TGF-β generation by T cells remain largely unknown. To address this issue, we take advantage of the fact that intestinal helminths stimulate Th2 cells besides triggering TGF-β generation by T lymphocytes and regulate immune-mediated disorders. We show that the Th2 cell-inducing transcription factor STAT6 is necessary and sufficient for the expression of TGF-β propeptide in T cells. STAT6 is also necessary for several helminth-triggered events in mice, such as TGF-β-dependent suppression of alloreactive inflammation in graft-versus-host disease. Besides STAT6, helminth-induced secretion of active TGF-β requires cleavage of propeptide by the endopeptidase furin. Thus, for the immune regulatory pathway necessary for TGF-β production by T cells, our results support a two-step model, composed of STAT6 and furin.Item Suppression of choroidal neovascularization through inhibition of APE1/Ref-1 redox activity(Association for Research in Vision and Opthalmology, 2014-07) Li, Yue; Liu, Xiuli; Zhou, Tongrong; Kelley, Mark R.; Edwards, Paul A.; Gao, Hua; Qiao, Xiaoxi; Department of Pediatrics, IU School of MedicinePURPOSE: The redox function of APE1/Ref-1 is a key regulator in pathological angiogenesis, such as retinal neovascularization and tumor growth. In this study, we examined whether inhibition of APE1/Ref-1 redox function by a small molecule inhibitor E3330 suppresses experimental choroidal neovascularization (CNV) in vitro and in vivo. METHODS: Primate choroid endothelial cells (CECs) received treatment of 0 to 100 μM E3330 alone or cotreatment of E3330 and 500 μg/mL anti-VEGF antibody bevacizumab. Choroid endothelial cell angiogenic function was examined by cell proliferation, migration, and tube formation assays. The effects of E3330 on NF-κB and STAT3 signaling pathways were determined by reporter gene assay, Western blot, and ELISA. Laser-induced CNV mouse model was used to test the effects of E3330 in vivo. Potential toxicity of E3330 was evaluated by TUNEL assay. RESULTS: The E3330 of 25 to 100 μM dose-dependently suppressed CEC proliferation, migration, and tube formation, in the absence of noticeable cell toxicity. Lower doses of E3330 (10-20 μM) reduced the transcriptional activity of NF-κB and STAT3 without affecting protein phosphorylation of both molecules. At the same time, E3330 downregulated MCP-1 production in CECs. The antiangiogenic effect of E3330 was comparable and additive to bevacizumab. The E3330 effectively attenuated the progression of laser-induced CNV in mice after a single intravitreal injection. CONCLUSIONS: The APE1/Ref-1 redox function regulates multiple transcription factors and inflammatory molecules, and is essential for CEC angiogenesis. Specific inhibition of APE1/Ref-1 redox function with E3330 may represent a promising novel treatment for wet AMD.Item The Volume-Outcome Relationship in Nursing Home Care: An Examination of Functional Decline Among Long-term Care Residents(Wolters Kluwer, 2010) Li, Yue; Cai, Xueya; Mukamel, Dana B.; Glance, Laurent G.; Biostatistics, School of Public HealthBackground: Extensive evidence has demonstrated a relationship between patient volume and improved clinical outcomes in hospital care. This study sought to determine whether a similar association exists between nursing home volume of long-term care residents and rates of decline in physical function. Methods: We conducted retrospective analyses on the 2004 and 2005 Minimum Data Set files that contain 605,433 eligible long-term residents in 9336 nursing homes. The outcome was defined following the federal “Nursing Home Compare” measure that captures changes in 4 basic activities of daily living status between 2 consecutive quarters. Both the outcome measure and nursing home volume were defined on the basis of long-term care residents. We estimated random-effects logistic regression models to quantify the independent impact of volume on functional decline. Results: As volume increased, nursing home’s unadjusted rate of functional decline tended to be lower. After multivariate adjustment for baseline resident characteristics and the nesting of residents within facilities, the odds ratio of activities of daily living decline was 0.82 (95% confidence interval: 0.79–0.86, P < 0.000) for residents in high-volume nursing homes (>101 residents/facility), compared with residents in low-volume facilities (30–51 residents/facility). Conclusions: High volume of long-term care residents in a nursing home is associated with overall less functional decline. Further studies are needed to test other important nursing home outcomes, and explore various institutional, staffing, and resource attributes that underlie this volume-outcome association for long-term care. Understanding how greater experience of high-volume facilities leads to better resident outcome may help guide quality improvement efforts in nursing homes.Item Therapeutic Applications of Halloysite(MDPI, 2022) Mobaraki, Mohammadmahdi; Karnik, Sonali; Li, Yue; Mills, David K.; Orthopaedic Surgery, School of MedicineIn recent years, nanomaterials have attracted significant research interest for applications in biomedicine. Many kinds of engineered nanomaterials, such as lipid nanoparticles, polymeric nanoparticles, porous nanomaterials, silica, and clay nanoparticles, have been investigated for use in drug delivery systems, regenerative medicine, and scaffolds for tissue engineering. Some of the most attractive nanoparticles for biomedical applications are nanoclays. According to their mineralogical composition, approximately 30 different nanoclays exist, and the more commonly used clays are bentonite, halloysite, kaolinite, laponite, and montmorillonite. For millennia, clay minerals have been extensively investigated for use in antidiarrhea solutions, anti-inflammatory agents, blood purification, reducing infections, and healing of stomach ulcers. This widespread use is due to their high porosity, surface properties, large surface area, excellent biocompatibility, the potential for sustained drug release, thermal and chemical stability. We begin this review by discussing the major nanoclay types and their application in biomedicine, focusing on current research areas for halloysite in biomedicine. Finally, recent trends and future directions in HNT research for biomedical application are explored.Item USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer(Springer Nature, 2022-09-26) Shi, Dongni; Wu, Xianqiu; Jian, Yunting; Wang, Junye; Huang, Chengmei; Mo, Shuang; Li, Yue; Li, Fengtian; Zhang, Chao; Zhang, Dongsheng; Zhang, Huizhong; Huang, Huilin; Chen, Xin; Wang, Y. Alan; Lin, Chuyong; Liu, Guozhen; Song, Libing; Liao, Wenting; Medicine, School of MedicineIndoleamine 2,3 dioxygenase 1 (IDO1) is an attractive target for cancer immunotherapy. However, IDO1 inhibitors have shown disappointing therapeutic efficacy in clinical trials, mainly because of the activation of the aryl hydrocarbon receptor (AhR). Here, we show a post-transcriptional regulatory mechanism of IDO1 regulated by a proteasome-associated deubiquitinating enzyme, USP14, in colorectal cancer (CRC). Overexpression of USP14 promotes tryptophan metabolism and T-cell dysfunction by stabilizing the IDO1 protein. Knockdown of USP14 or pharmacological targeting of USP14 decreases IDO1 expression, reverses suppression of cytotoxic T cells, and increases responsiveness to anti-PD-1 in a MC38 syngeneic mouse model. Importantly, suppression of USP14 has no effects on AhR activation induced by the IDO1 inhibitor. These findings highlight a relevant role of USP14 in post-translational regulation of IDO1 and in the suppression of antitumor immunity, suggesting that inhibition of USP14 may represent a promising strategy for CRC immunotherapy.Item A δ2H offset correction method for quantifying root water uptake of riparian trees(Elsevier, 2021-02) Li, Yue; Ma, Ying; Song, Xianfang; Wang, Lixin; Han, Dongmei; Earth Sciences, School of ScienceRoot water uptake plays an important role in water cycle in Groundwater-Soil-Plant-Atmosphere-Continuum. Stable isotopes (δ2H and δ18O) are effective tools to quantify the use of different water sources by plant roots. However, the widespread δ2H offsets of stem water from its potential sources due to δ2H fractionation during root water uptake result in conflicting interpretations of water utilization using stable isotopes. In this study, a potential water source line (PWL), i.e., a linear regression line between δ18O and δ2H data of both soil water at different depths and groundwater, was proposed to correct δ2H offsets of stem water. The PWL-corrected δ2H was determined by subtracting the deviation between δ2H in stem water and PWL from the original value. The MixSIAR model coupled with seven types of input data (i.e. various combinations of single or dual isotopes with uncorrected or corrected δ2H data by PWL or soil water line (SWL)) were used to determine seasonal variations in water uptake patterns of riparian tree of Salix babylonica (L.) along the Jian and Chaobai River in Beijing, China. These methods were evaluated via three criteria including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and root mean square error (RMSE). Results showed that different types of input data led to considerable differences in the contributions of soil water at upper 30 cm (9.9–57.6%) and below 80 cm depths (29.0–76.4%). Seasonal water uptake patterns were significantly different especially when δ2H offset was pronounced (p < 0.05). The dual-isotopes method with uncorrected δ2H underestimated the contributions of soil water in the 0–30 cm layer (by 30.4%) and groundwater (by 56.3%) compared to that with PWL-corrected δ2H. The PWL correction method obtained a higher groundwater contribution (mean of 29.5%) than that estimated by the SWL correction method (mean of 24.5%). The MixSIAR model using dual-isotopes with PWL-corrected δ2H produced the smallest AIC (94.1), BIC (91.9) and RMSE values (4.8%) than other methods (94.9–101.7, 92.6–99.5 and 5.3–12.4%, respectively), which underlined the best performance of PWL correction method. The present study provides crucial insights into quantifying accurate root water uptake sources even if δ2H offset exists.