- Browse by Author
Browsing by Author "Li, Xiaoying"
Now showing 1 - 10 of 22
Results Per Page
Sort Options
Item Accessible precisions for estimating two conjugate parameters using Gaussian probes(American Physical Society, 2020-05) Assad, Syed M.; Li, Jiamin; Liu, Yuhong; Zhao, Ningbo; Zhao, Wen; Lam, Ping Koy; Ou, Z. Y.; Li, Xiaoying; Physics, School of ScienceWe analyze the precision limits for a simultaneous estimation of a pair of conjugate parameters in a displacement channel using Gaussian probes. Having a set of squeezed states as an initial resource, we compute the Holevo Cramér-Rao bound to investigate the best achievable estimation precisions if only passive linear operations are allowed to be performed on the resource prior to probing the channel. The analysis reveals the optimal measurement scheme and allows us to quantify the best precision for one parameter when the precision of the second conjugate parameter is fixed. To estimate the conjugate parameter pair with equal precision, our analysis shows that the optimal probe is obtained by combining two squeezed states with orthogonal squeezing quadratures on a 50:50 beam splitter. If different importance is attached to each parameter, then the optimal mixing ratio is no longer 50:50. Instead, it follows a simple function of the available squeezing and the relative importance between the two parameters.Item Approaching single temporal mode operation in twin beams generated by pulse pumped high gain spontaneous four wave mixing(OSA, 2016-01) Liu, Nannan; Liu, Yuhong; Guo, Xueshi; Yang, Lei; Li, Xiaoying; Ou, Z. Y.; Department of Physics, School of ScienceBy investigating the intensity correlation function, we study the spectral/temporal mode properties of twin beams generated by the pulse-pumped high gain spontaneous four wave mixing (SFWM) in optical fiber from both the theoretical and experimental aspects. The results show that the temporal property depends not only on the phase matching condition and the filters applied in the signal and idler fields, but also on the gain of SFWM. When the gain of SFWM is low, the spectral/temporal mode properties of the twin beams are determined by the phase matching condition and optical filtering and are usually of multi-mode nature, which leads to a value larger than 1 but distinctly smaller than 2 for the normalized intensity correlation function of individual signal/idler beam. However, when the gain of SFWM is very high, we demonstrate the normalized intensity correlation function of individual signal/idler beam approaches to 2, which is a signature of single temporal mode. This is so even if the frequencies of signal and idler fields are highly correlated so that the twin beams have multiple modes in low gain regime. We find that the reason for this behavior is the dominance of the fundamental mode over other higher order modes at high gain. Our investigation is useful for constructing high quality multi-mode squeezed and entangled states by using pulse-pumped spontaneous parametric down-conversion and SFWM.Item Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation(The Optical Society, 2015) Guo, Xueshi; Liu, Nannan; Li, Xiaoying; Ou, Z. Y.; Department of Physics, School of ScienceMode matching plays an important role in measuring the continuous variable entanglement. For the signal and idler twin beams generated by a pulse pumped fiber optical parametric amplifier (FOPA), the spatial mode matching is automatically achieved in single mode fiber, but the temporal mode property is complicated because it is highly sensitive to the dispersion and the gain of the FOPA. We study the temporal mode structure and derive the input-output relation for each temporal mode of signal and idler beams after decomposing the joint spectral function of twin beams with the singular-value decomposition method. We analyze the measurement of the quadrature-amplitude entanglement, and find mode matching between the multi-mode twin beams and the local oscillators of homodyne detection systems is crucial to achieve a high degree of entanglement. The results show that the noise contributed by the temporal modes nonorthogonal to local oscillator may be much larger than the vacuum noise, so the mode mis-match can not be accounted for by merely introducing an effective loss. Our study will be useful for developing a source of high quality continuous variable entanglement by using the FOPA.Item Direct Temporal Mode Measurement for the Characterization of Temporally Multiplexed High Dimensional Quantum Entanglement in Continuous Variables(APS, 2020-05-29) Huo, Nan; Liu, Yuhong; Li, Jiamin; Cui, Liang; Chen, Xin; Palivela, Rithwik; Xie, Tianqi; Li, Xiaoying; Ou, Z. Y.; Physics, School of ScienceField-orthogonal temporal mode analysis of optical fields has recently been developed for a new framework of quantum information science. However, so far, the exact profiles of the temporal modes are not known, which makes it difficult to achieve mode selection and demultiplexing. Here, we report a novel method that measures directly the exact form of the temporal modes. This, in turn, enables us to make mode-orthogonal homodyne detection with mode-matched local oscillators. We apply the method to a pulse-pumped, specially engineered fiber parametric amplifier and demonstrate temporally multiplexed multidimensional quantum entanglement of continuous variables in telecom wavelength. The temporal mode characterization technique can be generalized to other pulse-excited systems to find their eigenmodes for multiplexing in the temporal domain.Item Direct temporal mode measurement of photon pairs by stimulated emission(American Physical Society, 2020-03) Chen, Xin; Li, Xiaoying; Ou, Z. Y.; Physics, School of ScienceIt is known that photon pairs generated from pulse-pumped spontaneous parametric processes can be described by independent temporal modes and form a multitemporal mode entangled state. However, the exact form of the temporal modes is not known even though the joint spectral intensity of photon pairs can be measured by the method of stimulated emission tomography. In this paper, we describe a feedback-iteration method which, combined with the stimulated emission method, can give rise to the exact forms of the independent temporal modes for the temporally entangled photon pairs.Item Distribution of entangled photon pairs over few-mode fibers(Nature Publishing group, 2017-11-12) Cui, Liang; Su, Jie; Li, Xiaoying; Ou, Z. Y.; Physics, School of ScienceFew-mode fibers (FMFs) have been recently employed in classical optical communication to increase the data transmission capacity. Here we explore the capability of employing FMF for long distance quantum communication. We experimentally distribute photon pairs in the forms of time-bin and polarization entanglement over a 1-km-long FMF. We find the time-bin entangled photon pairs maintain their high degree of entanglement, no matter what type of spatial modes they are distributed in. For the polarization entangled photon pairs, however, the degree of entanglement is maintained when photon pairs are distributed in LP 01 mode but significantly declines when photon pairs are distributed in LP 11 mode due to a mode coupling effect in LP 11 mode group. We propose and test a remedy to recover the high degree of entanglement. Our study shows, when FMFs are employed as quantum channels, selection of spatial channels and degrees of freedom of entanglement should be carefully considered.Item Generation of pure-state single photons with high heralding efficiency by using a three-stage nonlinear interferometer(American Institute of Physics, 2020-05-18) Li, Jiamin; Su, Jie; Cui, Liang; Xie, Tianqi; Ou, Z. Y.; Li, Xiaoying; Physics, School of ScienceWe experimentally study a fiber-based three-stage nonlinear interferometer and demonstrate its application in generating heralded single photons with high efficiency and purity by spectral engineering. We obtain a heralding efficiency of 90% at a brightness of 0.039 photons/pulse. The purity of the source is checked by two-photon Hong-Ou-Mandel interference with a visibility of 95 ± 6% (after correcting Raman scattering and multi-pair events). Our investigation indicates that the heralded source of single photons produced by the three-stage nonlinear interferometer has the advantages of high purity, high heralding efficiency, high brightness, and flexibility in wavelength and bandwidth selection.Item High visibility Hong-Ou-Mandel interference between independent single photon sources obtained from multistage nonlinear interferometers(OSA, 2019-05) Li, Jiamin; Jie, Su; Cui, Liang; Li, Xiaoying; Ou, Z. Y.; Physics, School of ScienceUsing spontaneous four-wave mixing in a 3-stage nonlinear interferometer for temporal mode shaping, we efficiently generate heralded single photons in single-mode, evidenced by a visibility of 90% in Hong–Ou–Mandel interference between independent sources.Item Interference between two independent multi-temporal-mode thermal fields(APS, 2019-01) Su, Jie; Li, Jiamin; Cui, Liang; Li, Xiaoying; Ou, Z. Y.; Physics, School of ScienceWe construct a general theoretical model for analyzing the intensity correlation of the field formed by mixing two independent multi-temporal-mode thermal fields. In the model, we use the intensity correlation function g(2) to characterize the mode property of the mixed thermal field. We find that g(2) of the mixed field is always less than that of the individual thermal field with less average mode number unless the two thermal fields are identical in mode property. The amount of drop in g(2) of the interference field depends on the relative overlap between the mode structures of two thermal fields and their relative strength. We successfully derive the analytical expressions of the upper bound and lower limit for g(2) of the interference field. Moreover, we verify the theoretical analysis by performing a series of experiments when the mode structures of two independent thermal fields are identical, orthogonal, and partially overlapped, respectively. The experimental results agree with theoretical predictions. Our investigation is useful for analyzing the signals carried by the intensity correlation of thermal fields.Item Joint measurement of multiple noncommuting parameters(APS, 2018-05) Li, Jiamin; Liu, Yuhong; Cui, Liang; Huo, Nan; Assad, Syed M.; Li, Xiaoying; Ou, Z. Y.; Physics, School of ScienceAlthough quantum metrology allows us to make precision measurements beyond the standard quantum limit, it mostly works on the measurement of only one observable due to the Heisenberg uncertainty relation on the measurement precision of noncommuting observables for one system. In this paper, we study the schemes of joint measurement of multiple observables which do not commute with each other using the quantum entanglement between two systems. We focus on analyzing the performance of a SU(1,1) nonlinear interferometer on fulfilling the task of joint measurement. The results show that the information encoded in multiple noncommuting observables on an optical field can be simultaneously measured with a signal-to-noise ratio higher than the standard quantum limit, and the ultimate limit of each observable is still the Heisenberg limit. Moreover, we find a resource conservation rule for the joint measurement.
- «
- 1 (current)
- 2
- 3
- »