- Browse by Author
Browsing by Author "Li, Ning"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item A novel class of self-complementary AAV vectors with multiple advantages based on cceAAV lacking mutant ITR(Elsevier, 2024-02-03) Zhang, Junping; Frabutt, Dylan A.; Chrzanowski, Matthew; Li, Ning; Miller, Lohra M.; Tian, Jiahe; Mulcrone, Patrick L.; Lam, Anh K.; Draper, Benjamin E.; Jarrold, Martin F.; Herzog, Roland W.; Xiao, Weidong; Pediatrics, School of MedicineSelf-complementary AAV vectors (scAAV) use a mutant inverted terminal repeat (mITR) for efficient packaging of complementary stranded DNA, enabling rapid transgene expression. However, inefficient resolution at the mITR leads to the packaging of monomeric or subgenomic AAV genomes. These noncanonical particles reduce transgene expression and may affect the safety of gene transfer. To address these issues, we have developed a novel class of scAAV vectors called covalently closed-end double-stranded AAV (cceAAV) that eliminate the mITR resolution step during production. Instead of using a mutant ITR, we used a 56-bp recognition sequence of protelomerase (TelN) to covalently join the top and bottom strands, allowing the vector to be generated with just a single ITR. To produce cceAAV vectors, the vector plasmid is initially digested with TelN, purified, and then subjected to a standard triple-plasmid transfection protocol followed by traditional AAV vector purification procedures. Such cceAAV vectors demonstrate yields comparable to scAAV vectors. Notably, we observed enhanced transgene expression as compared to traditional scAAV vectors. The treatment of mice with hemophilia B with cceAAV-FIX resulted in significantly enhanced long-term FIX expression. The cceAAV vectors hold several advantages over scAAV vectors, potentially leading to the development of improved human gene therapy drugs.Item Characterization of a Bioengineered AAV3B Capsid Variant with Enhanced Hepatocyte Tropism and Immune Evasion(Liebert, 2023-04) Rana, Jyoti; Marsic, Damien; Zou, Chenhui; Muñoz-Melero, Maite; Li, Xin; Kondratov, Oleksandr; Li, Ning; de Jong, Ype P.; Zolotukhin, Sergei; Biswas, Moanaro; Pediatrics, School of MedicineCapsid engineering of adeno-associated virus (AAV) can surmount current limitations to gene therapy such as broad tissue tropism, low transduction efficiency, or pre-existing neutralizing antibodies (NAb) that restrict patient eligibility. We previously generated an AAV3B combinatorial capsid library by integrating rational design and directed evolution with the aim of improving hepatotropism. A potential isolate, AAV3B-DE5, gained a selective proliferative advantage over five rounds of iterative selection in hepatocyte spheroid cultures. In this study, we reanalyzed our original dataset derived from the AAV3B combinatorial library and isolated variants from earlier (one to three) rounds of selection, with the assumption that variants with faster replication kinetics are not necessarily the most efficient transducers. We identified a potential candidate, AAV3B-V04, which demonstrated significantly enhanced transduction in mouse-passaged primary human hepatocytes as well as in humanized liver chimeric mice, compared to the parental AAV3B or the previously described isolate, AAV3B-DE5. Interestingly, the AAV3B-V04 capsid variant exhibited significantly reduced seroreactivity to pooled or individual human serum samples. Forty-four percent of serum samples with pre-existing NAbs to AAV3B had 5- to 20-fold lower reciprocal NAb titers to AAV3B-V04. AAV3B-V04 has only nine amino acid substitutions, clustered in variable region IV compared to AAV3B, indicating the importance of the loops at the top of the three-fold protrusions in determining both transduction efficiency and immunogenicity. This study highlights the effectiveness of rational design combined with targeted selection for enhanced AAV transduction via molecular evolution approaches. Our findings support the concept of limiting selection rounds to isolate the best transducing AAV3B variant without outgrowth of faster replicating candidates. We conclude that AAV3B-V04 provides advantages such as improved human hepatocyte tropism and immune evasion and propose its utility as a superior candidate for liver gene therapy.Item Curing Hemophilia: Repeated Treatments versus a One-Off Fix(Elsevier, 2020-05-06) Li, Ning; Kaczmarek, Radoslaw; Pediatrics, School of MedicineItem Engineering and In Vitro Selection of a Novel AAV3B Variant with High Hepatocyte Tropism and Reduced Seroreactivity(Elsevier, 2020-10) Biswas, Moanaro; Marsic, Damien; Li, Ning; Zou, Chenhui; Gonzalez-Aseguinolaza, Gloria; Zolotukhin, Irene; Kumar, Sandeep R.P.; Rana, Jyoti; Butterfield, John S.S.; Kondratov, Oleksandr; de Jong, Ype P.; Herzog, Roland W.; Zolotukhin, Sergei; Pediatrics, School of MedicineLimitations to successful gene therapy with adeno-associated virus (AAV) can comprise pre-existing neutralizing antibodies to the vector capsid that can block cellular entry, or inefficient transduction of target cells that can lead to sub-optimal expression of the therapeutic transgene. Recombinant serotype 3 AAV (AAV3) is an emerging candidate for liver-directed gene therapy. In this study, we integrated rational design by using a combinatorial library derived from AAV3B capsids with directed evolution by in vitro selection for liver-targeted AAV variants. The AAV3B-DE5 variant described herein was undetectable in the original viral library but gained a selective advantage upon in vitro passaging in human hepatocarcinoma spheroid cultures. AAV3B-DE5 contains 24 capsid amino acid substitutions compared with AAV3B, distributed among all five variable regions, with strong selective pressure on VR-IV, VR-V, and VR-VII. In vivo, AAV3B-DE5 demonstrated improved human hepatocyte tropism in a liver chimeric mouse model. Importantly, this variant exhibited reduced seroreactivity to human intravenous immunoglobulin (i.v. Ig), as well as individual serum samples from 100 healthy human donors. Therefore, molecular evolution using a combinatorial library platform generated a viral capsid with high hepatocyte tropism and enhanced evasion of pre-existing AAV neutralizing antibodies.Item IL-15 blockade and rapamycin rescue multifactorial loss of factor VIII from AAV-transduced hepatocytes in hemophilia A mice(Elsevier, 2022-12-07) Butterfield, John S. S.; Yamada, Kentaro; Bertolini, Thais B.; Syed, Farooq; Kumar, Sandeep R. P.; Li, Xin; Arisa, Sreevani; Piñeros, Annie R.; Tapia, Alejandro; Rogers, Christopher A.; Li, Ning; Rana, Jyoti; Biswas, Moanaro; Terhorst, Cox; Kaufman, Randal J.; de Jong, Ype P.; Herzog, Roland W.; Pediatrics, School of MedicineHepatic adeno-associated viral (AAV) gene transfer has the potential to cure the X-linked bleeding disorder hemophilia A. However, declining therapeutic coagulation factor VIII (FVIII) expression has plagued clinical trials. To assess the mechanistic underpinnings of this loss of FVIII expression, we developed a hemophilia A mouse model that shares key features observed in clinical trials. Following liver-directed AAV8 gene transfer in the presence of rapamycin, initial FVIII protein expression declines over time in the absence of antibody formation. Surprisingly, loss of FVIII protein production occurs despite persistence of transgene and mRNA, suggesting a translational shutdown rather than a loss of transduced hepatocytes. Some of the animals develop ER stress, which may be linked to hepatic inflammatory cytokine expression. FVIII protein expression is preserved by interleukin-15/interleukin-15 receptor blockade, which suppresses CD8+ T and natural killer cell responses. Interestingly, mice with initial FVIII levels >100% of normal had diminishing expression while still under immune suppression. Taken together, our findings of interanimal variability of the response, and the ability of the immune system to shut down transgene expression without utilizing cytolytic or antibody-mediated mechanisms, illustrate the challenges associated with FVIII gene transfer. Our protocols based upon cytokine blockade should help to maintain efficient FVIII expression.Item Redundancy in Innate Immune Pathways That Promote CD8+ T-Cell Responses in AAV1 Muscle Gene Transfer(MDPI, 2024-09-24) Li, Ning; Kumar, Sandeep R. P.; Cao, Di; Munoz-Melero, Maite; Arisa, Sreevani; Brian, Bridget A.; Greenwood, Calista M.; Yamada, Kentaro; Duan, Dongsheng; Herzog, Roland W.; Pediatrics, School of MedicineWhile adeno-associated viral (AAV) vectors are successfully used in a variety of in vivo gene therapy applications, they continue to be hampered by the immune system. Here, we sought to identify innate and cytokine signaling pathways that promote CD8+ T-cell responses against the transgene product upon AAV1 vector administration to murine skeletal muscle. Eliminating just one of several pathways (including DNA sensing via TLR9, IL-1 receptor signaling, and possibly endosomal sensing of double-stranded RNA) substantially reduced the CD8+ T-cell response at lower vector doses but was surprisingly ineffective at higher doses. Using genetic, antibody-mediated, and vector engineering approaches, we show that blockade of at least two innate pathways is required to achieve an effect at higher vector doses. Concurrent blockade of IL-1R1 > MyD88 and TLR9 > MyD88 > type I IFN > IFNaR pathways was often but not always synergistic and had limited utility in preventing antibody formation against the transgene product. Further, even low-frequency CD8+ T-cell responses could eliminate transgene expression, even in MyD88- or IL-1R1-deficient animals that received a low vector dose. However, we provide evidence that CpG depletion of vector genomes and including TLR9 inhibitory sequences can synergize. When this construct was combined with the use of a muscle-specific promoter, transgene expression in muscle was sustained with minimal local or systemic CD8+ T-cell response. Thus, innate immune avoidance/blockade strategies by themselves, albeit helpful, may not be sufficient to prevent destructive cellular responses in muscle gene transfer because of the redundancy of immune-activating pathways.