- Browse by Author
Browsing by Author "Li, Linhai"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Sunlight induced chlorophyll fluorescence in the near-infrared spectral region in natural waters: Interpretation of the narrow reflectance peak around 761 nm(AGU, 2016-07) Lu, Yingcheng; Li, Linhai; Hu, Chuanmin; Li, Lin; Zhang, Minwei; Sun, Shaojie; Lv, Chunguang; Department of Earth Sciences, School of ScienceSunlight induced chlorophyll a fluorescence (SICF) can be used as a probe to estimate chlorophyll a concentrations (Chl) and infer phytoplankton physiology. SICF at ∼685 nm has been widely applied to studies of natural waters. SICF around 740 nm has been demonstrated to cause a narrow reflectance peak at ∼761 nm in the reflectance spectra of terrestrial vegetation. This narrow peak has also been observed in the reflectance spectra of natural waters, but its mechanism and applications have not yet been investigated and it has often been treated as measurement artifacts. In this study, we aimed to interpret this reflectance peak at ∼761 nm and discuss its potential applications for remote monitoring of natural waters. A derivative analysis of the spectral reflectance suggests that the 761 nm peak is due to SICF. It was also found that the fluorescence line height (FLH) at 761 nm significantly and linearly correlates with Chl. FLH(761 nm) showed a tighter relationship with Chl than the relationship between FLH(∼685 nm) and Chl mainly due to weaker perturbations by nonalgal materials around 761 nm. While it is not conclusive, a combination of FLH(761 nm) and FLH(∼685 nm) might have some potentials to discriminate cyanobacteria from other phytoplankton due to their different fluorescence responses at the two wavelengths. It was further found that reflectance spectra with a 5 nm spectral resolution are adequate to capture the spectral SICF feature at ∼761 nm. These preliminary results suggest that FLH(761 nm) need to be explored more for future applications in optically complex coastal and inland waters.Item A transferable bio-optical model for quantification of inland water caynobacterial pigments(2012-03-16) Li, Linhai; Li, Lin; Tedesco, Lenore P.; Wilson, Jeffrey S. (Jeffrey Scott), 1967-Cyanobacterial blooms are currently one of the most important issues faced by environmental agencies, water authorities and public health organizations. Remote sensing provides an advanced approach to monitor cyanobacteria by detecting and quantifying chlorophyll-a (Chl-a) and phycocaynin (PC). In this thesis, an analytical bio-optical model, more typically applied to ocean waters, was modified to accommodate the complexity of inland waters. The newly developed models work well to estimate inherent optical properties, including absorption and backscattering coefficients, in eight different study sites distributed around the globe. Based on derived absorption coefficients, Chl-a and PC concentrations were accurately retrieved for data sets collected annually from 2006 to 2010, and the estimation accuracy exceeded that of currently used algorithms. An important advantage of the model is that low concentrations of Chl-a and PC can be predicted more accurately, enabling early warning of cyanobacterial blooms. In addition, the results also indicated good spatial and temporal transferability of the algorithms, since no specific calibration procedures were required for data sets collected in a different sites and seasons. The compatibility of the newly developed algorithm with MERIS spectra provides the possibility for routine surveillance of cyanobacterial growth in inland waters.