ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Li, Jinan"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Actin at stereocilia tips is regulated by mechanotransduction and ADF/cofilin
    (Elsevier, 2021-03) McGrath, Jamis; Tung, Chun-Yu; Liao, Xiayi; Belyantseva, Inna A.; Roy, Pallabi; Chakraborty, Oisorjo; Li, Jinan; Berbari, Nicolas F.; Faaborg-Andersen, Christian C.; Barzik, Melanie; Bird, Jonathan E.; Zhao, Bo; Balakrishnan, Lata; Friedman, Thomas B.; Perrin, Benjamin J.; Biology, School of Science
    Stereocilia on auditory sensory cells are actin-based protrusions that mechanotransduce sound into an electrical signal. These stereocilia are arranged into a bundle with three rows of increasing length to form a staircase-like morphology that is required for hearing. Stereocilia in the shorter rows, but not the tallest row, are mechanotransducing because they have force-sensitive channels localized at their tips. The onset of mechanotransduction during mouse postnatal development refines stereocilia length and width. However, it is unclear how actin is differentially regulated between stereocilia in the tallest row of the bundle and the shorter, mechanotransducing rows. Here, we show actin turnover is increased at the tips of mechanotransducing stereocilia during bundle maturation. Correspondingly, from birth to postnatal day 6, these stereocilia had increasing amounts of available actin barbed ends, where monomers can be added or lost readily, as compared with the non-mechanotransducing stereocilia in the tallest row. The increase in available barbed ends depended on both mechanotransduction and MYO15 or EPS8, which are required for the normal specification and elongation of the tallest row of stereocilia. We also found that loss of the F-actin-severing proteins ADF and cofilin-1 decreased barbed end availability at stereocilia tips. These proteins enriched at mechanotransducing stereocilia tips, and their localization was perturbed by the loss of mechanotransduction, MYO15, or EPS8. Finally, stereocilia lengths and widths were dysregulated in Adf and Cfl1 mutants. Together, these data show that actin is remodeled, likely by a severing mechanism, in response to mechanotransduction.
  • Loading...
    Thumbnail Image
    Item
    Autophagy proteins are essential for aminoglycoside-induced hearing loss
    (Taylor & Francis, 2023) Li, Jinan; Liu, Chang; Müller, Ulrich; Zhao, Bo; Otolaryngology -- Head and Neck Surgery, School of Medicine
    Aminoglycosides (AGs) are widely used to treat severe infections. However, systemically administered AGs preferentially kill cochlear hair cells, resulting in irreversible hearing loss. Recently, we found that AGs bind to RIPOR2 and trigger its rapid translocation in cochlear hair cells. Reducing RIPOR2 expression entirely prevents AG-induced hair cell death and subsequent hearing loss in mice. Next using yeast two-hybrid screening, we found that RIPOR2 interacts with GABARAP, a key macroautophagy/autophagy pathway protein. Following AG treatment, RIPOR2 colocalizes with GABARAP and regulates the activation of autophagy. Remarkably, reducing the expression of GABARAP, or another key autophagy protein MAP1LC3B/LC3B, entirely prevents AG-induced hair cell death and subsequent hearing loss in mice. Furthermore, we found that AGs activate the autophagy pathway specific to mitochondria. Reducing the expression of PINK1 or PRKN/parkin, two key mitophagy proteins, protects hair cells against AG toxicity. Thus, our findings demonstrated that RIPOR2-mediated autophagic dysfunction is essential for AG-induced hearing loss and provided potential therapeutic strategies for preventing AG toxicity.
  • Loading...
    Thumbnail Image
    Item
    Collapsin Response Mediator Protein 1 (CRMP1) Is Required for High-Frequency Hearing
    (Elsevier, 2022) Li, Jinan; Liu, Chang; Zhao, Bo; Otolaryngology -- Head and Neck Surgery, School of Medicine
    Collapsin response mediator protein 1 (CRMP1), also known as dihydropyrimidinase-related protein 1, participates in cytoskeleton remodeling during axonal guidance and neuronal migration. In cochlear hair cells, the assembly and maintenance of the cytoskeleton is of great interest because it is crucial for the morphogenesis and maintenance of hair cells. Previous RNA sequencing analysis found that Crmp1 is highly expressed in cochlear hair cells. However, the expression profile and functions of CRMP1 in the inner ear remain unknown. In this study, the expression and localization of CRMP1 in hair cells was investigated using immunostaining, and was shown to be highly expressed in both outer and inner hair cells. Next, the stereocilia morphology of Crmp1-deficient mice was characterized. Abolishing CRMP1 did not affect the morphogenesis of hair cells. Interestingly, scanning electron microscopy detected hair cell loss at the basal cochlear region, an area responsible for high-frequency auditory perception, in Crmp1-deficient mice. Correspondingly, an auditory brainstem response test showed that mice lacking CRMP1 had progressive hearing loss at high frequencies. In summary, these data suggest that CRMP1 is required for high-frequency auditory perception.
  • Loading...
    Thumbnail Image
    Item
    Inhibition of GABARAP or GABARAPL1 prevents aminoglycoside- induced hearing loss
    (National Academy of Sciences, 2025) Li, Jinan; Oh, Seung-Il; Liu, Chang; Zhao, Bo; Otolaryngology -- Head and Neck Surgery, School of Medicine
    Aminoglycosides (AGs) are highly potent, broad-spectrum antibiotics frequently used as first-line treatments for multiple life-threatening infections. Despite their severe ototoxicity, causing irreversible hearing loss in millions of people annually, no preventive therapy has been approved. We previously reported that GABARAP and several other central autophagy proteins are essential for AG-induced hearing loss. This finding opens avenues for the rational design and development of inhibitors that selectively target proteins in this pathway, thereby mitigating AG ototoxicity. In this study, we generated a mouse model with a targeted deletion of GABARAPL1, a homolog of GABARAP, and another model deficient in both GABARAP and GABARAPL1. We found that normal hearing is unaffected by the depletion of these proteins. Remarkably, both proteins are essential for AG-induced hearing loss, with GABARAP playing a more significant role. To further explore the therapeutic potential, we designed and validated short hairpin RNAs targeting the mouse and human GABARAP gene. By inhibiting GABARAP expression in inner ear hair cells using adeno-associated virus-mediated RNA interference, we successfully prevented AG-induced hair cell death and subsequent hearing loss. Our findings underscore the critical role of GABARAP in AG ototoxicity and highlight its potential as a therapeutic target for preventing AG-induced hearing loss.
  • Loading...
    Thumbnail Image
    Item
    N-Terminus of GRXCR2 Interacts With CLIC5 and Is Essential for Auditory Perception
    (Frontiers Media, 2021-05-05) Li, Jinan; Liu, Chang; Zhao, Bo; Otolaryngology -- Head and Neck Surgery, School of Medicine
    Stereocilia of cochlear hair cells are specialized mechanosensing organelles that convert sound-induced vibration to electrical signals. Glutaredoxin domain-containing cysteine-rich protein 2 (GRXCR2) is localized at the base of stereocilia and is necessary for stereocilia morphogenesis and auditory perception. However, the detailed functions of GRXCR2 in hair cells are still largely unknown. Here, we report that GRXCR2 interacts with chloride intracellular channel protein 5 (CLIC5) which is also localized at the base of stereocilia and required for normal hearing in human and mouse. Immunolocalization analyses suggest that GRXCR2 is not required for the localization of CLIC5 to the stereociliary base during development, or vice versa. Using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we deleted 60 amino acids near the N-terminus of GRXCR2 essential for its interaction with CLIC5. Interestingly, mice harboring this in-frame deletion in Grxcr2 exhibit moderate hearing loss at lower frequencies and severe hearing loss at higher frequencies although the morphogenesis of stereocilia is minimally affected. Thus, our findings reveal that the interaction between GRXCR2 and CLIC5 is crucial for normal hearing.
  • Loading...
    Thumbnail Image
    Item
    RIPOR2-mediated autophagy dysfunction is critical for aminoglycoside-induced hearing loss
    (Elsevier, 2022) Li, Jinan; Liu, Chang; Müller, Ulrich; Zhao, Bo; Otolaryngology -- Head and Neck Surgery, School of Medicine
    Aminoglycosides (AGs) are potent antibiotics capable of treating a wide variety of life-threatening infections, however, they are ototoxic and cause irreversible damage to cochlear hair cells. Despite substantial progress, little is known about the molecular pathways critical for hair cell function and survival that are affected by AG exposure. We demonstrate here that gentamicin, a representative AG antibiotic, binds to and triggers within minutes translocation of RIPOR2 in murine hair cells from stereocilia to the pericuticular area. Then, by interacting with a central autophagy component GABARAP, RIPOR2 affects autophagy activation. Reducing the expression of RIPOR2 or GABARAP completely prevents AG-induced hair cell death and subsequent hearing loss in mice. Additionally, abolishing the expression of PINK1 or Parkin, two key mitochondrial autophagy proteins, prevents hair cell death and subsequent hearing loss caused by AG. In summary, our study demonstrates that RIPOR2-mediated autophagic dysfunction is essential for AG-induced hearing loss.
  • Loading...
    Thumbnail Image
    Item
    Taperin bundles F-actin at stereocilia pivot points enabling optimal lifelong mechanosensitivity
    (Rockefeller University Press, 2025) Belyantseva, Inna A.; Liu, Chang; Dragich, Abigail K.; Miyoshi, Takushi; Inagaki, Sayaka; Imtiaz, Ayesha; Tona, Risa; Zuluaga-Osorio, Karen Sofia; Hadi, Shadan; Wilson, Elizabeth; Morozko, Eva; Olszewski, Rafal; Yousaf, Rizwan; Sokolova, Yuliya; Riordan, Gavin P.; Aston, S. Andrew; Rehman, Atteeq U.; Fenollar Ferrer, Cristina; Wisniewski, Jan; Gu, Shoujun; Nayak, Gowri; Goodyear, Richard J.; Li, Jinan; Krey, Jocelyn F.; Wafa, Talah; Faridi, Rabia; Adadey, Samuel Mawuli; Drummond, Meghan; Perrin, Benjamin; Winkler, Dennis C.; Starost, Matthew F.; Cheng, Hui; Fitzgerald, Tracy; Richardson, Guy P.; Dong, Lijin; Barr-Gillespie, Peter G.; Hoa, Michael; Frolenkov, Gregory I.; Friedman, Thomas B.; Zhao, Bo; Otolaryngology -- Head and Neck Surgery, School of Medicine
    Stereocilia are rod-like mechanosensory projections consisting of unidirectionally oriented actin filaments that extend into the inner ear hair cell cytoskeleton, forming dense rootlets. Taperin (TPRN) localizes to the narrowed-down base of stereocilia, where they pivot in response to sound and gravity. We show that TPRN-deficient mice have progressive deafness characterized by gradual asynchronous retraction and fusion of outer and inner hair cell stereocilia, followed by synaptic abnormalities. Stereocilia that lack TPRN develop warped rootlets with gradual loss of TRIOBP-5 and ANKRD24 from mechanosensory rows starting postnatally. In contrast, TPRN overexpression causes excessive F-actin bundling, extra rows, and over-elongation of stereocilia during development. Purified full-length mouse TPRN cross-links F-actin into bendable bundles reflecting in vivo data. This F-actin-bundling ability is attributed to the TPRN N-terminal region. TPRN interacts with the membrane receptor PTPRQ, connecting the F-actin core to the plasma membrane, stabilizing stereocilia. Thus, TPRN is a specialized F-actin bundler strategically located to augment stereocilia rootlet formation and their pivot point flexibility for sustained sound-induced deflections.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University