- Browse by Author
Browsing by Author "Li, Huiying"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Impacts of Climate Change on Tibetan Lakes: Patterns and Processes(MDPI, 2018-02-26) Mao, Dehua; Wang, Zongming; Yang, Hong; Li, Huiying; Thompson, Julian R.; Li, Lin; Song, Kaishan; Chen, Bin; Gao, Hongkai; Wu, Jianguo; Earth Sciences, School of ScienceHigh-altitude inland-drainage lakes on the Tibetan Plateau (TP), the earth’s third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and associated changes on Tibetan lakes are largely unknown. This study used long time series and multi-temporal Landsat imagery to map the patterns of Tibetan lakes and glaciers in 1977, 1990, 2000, and 2014, and further to assess the spatiotemporal changes of lakes and glaciers in 17 TP watersheds between 1977 and 2014. Spatially variable changes in lake and glacier area as well as climatic factors were analyzed. We identified four modes of lake change in response to climate and associated changes. Lake expansion was predominantly attributed to increased precipitation and glacier melting, whereas lake shrinkage was a main consequence of a drier climate or permafrost degradation. These findings shed new light on the impacts of recent environmental changes on Tibetan lakes. They suggest that protecting these high-altitude lakes in the face of further environmental change will require spatially variable policies and management measures.Item Impacts of Climate Change on Tibetan Lakes: Patterns and Processes(MDPI, 2018-02-26) Mao, Dehua; Wang, Zongming; Yang, Hong; Li, Huiying; Thompson, Julian; Li, Lin; Song, Kaishan; Chen, Bin; Gao, Hongkai; Wu, Jianguo; Earth Sciences, School of ScienceHigh-altitude inland-drainage lakes on the Tibetan Plateau (TP), the earth’s third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and associated changes on Tibetan lakes are largely unknown. This study used long time series and multi-temporal Landsat imagery to map the patterns of Tibetan lakes and glaciers in 1977, 1990, 2000, and 2014, and further to assess the spatiotemporal changes of lakes and glaciers in 17 TP watersheds between 1977 and 2014. Spatially variable changes in lake and glacier area as well as climatic factors were analyzed. We identified four modes of lake change in response to climate and associated changes. Lake expansion was predominantly attributed to increased precipitation and glacier melting, whereas lake shrinkage was a main consequence of a drier climate or permafrost degradation. These findings shed new light on the impacts of recent environmental changes on Tibetan lakes. They suggest that protecting these high-altitude lakes in the face of further environmental change will require spatially variable policies and management measures.Item Invasion of Spartina alterniflora in the coastal zone of mainland China: Control achievements from 2015 to 2020 towards the Sustainable Development Goals(Elsevier, 2022-12-01) Li, Huiying; Mao, Dehua; Wang, Zongming; Huang, Xiao; Li, Lin; Jia, Mingming; Earth and Environmental Sciences, School of ScienceThe Sustainable Development Goals (SDGs) and the Convention on Biological Diversity's 15th Conference of the Parties (CBD COP15) both emphasized the urgency of protecting biological diversity. Spartina alterniflora (S. alterniflora), as an invasive species in China, has posed severe biodiversity challenges, demanding nationwide control and management. This study aims to assess the effectiveness of S. alterniflora management during China's SDGs implementation from 2015 to 2020. Landsat images acquired in 2015 (the beginning year of SDGs), 2018, and 2020 (the end year of SDGs' targets 6.6, 14.2, 14.5, and 15.8 related to alien invasion) were applied to quantify the spatiotemporal dynamics of S. alterniflora extent. The results revealed a consistent shrinkage of S. alterniflora, with a net areal reduction of 2610 ha from 2015 to 2020, implying the effectiveness of control measures on S. alterniflora invasion. Provinces including Zhejiang, Jiangsu, and Shanghai have succeeded in controlling S. alterniflora, evidenced by the sharp reduction in S. alterniflora area by 4908 ha, 2176 ha, and 1034 ha, respectively, from 2015 to 2020. However, better management of S. alterniflora is needed in regions with more severe S. alterniflora invasion, e.g., Shandong, Fujian, and Guangdong provinces. Our results suggest that relevant policies, regulations, and ecological restoration projects implemented by national or local governments in China received satisfactory results in S. alterniflora control. Nevertheless, S. alterniflora potential utilities and its governance effectiveness should be objectively evaluated and weighed to obtain the greatest ecological benefits and promote sustainable coastal ecosystems. The results of this study are expected to provide important baseline information benefitting the formulation of coastal protection and restoration strategies in China.Item Monitoring the Invasion of Spartina alterniflora Using Multi-source High-resolution Imagery in the Zhangjiang Estuary, China(MDPI, 2017-06) Liu, Mingyue; Li, Huiying; Li, Lin; Man, Weidong; Jia, Mingming; Wang, Zongming; Lu, Chunyan; Earth Science, School of ScienceSpartina alterniflora (S. alterniflora) is one of the most harmful invasive plants in China. Google Earth (GE), as a free software, hosts high-resolution imagery for many areas of the world. To explore the use of GE imagery for monitoring S. alterniflora invasion and developing an understanding of the invasion process of S. alterniflora in the Zhangjiang Estuary, the object-oriented method and visual interpretation were applied to GE, SPOT-5, and Gaofen-1 (GF-1) images. In addition, landscape metrics of S. alterniflora patches adjacent to mangrove forests were calculated and mangrove gaps were recorded by checking whether S. alterniflora exists. The results showed that from 2003–2015, the areal extent of S. alterniflora in the Zhangjiang Estuary increased from 57.94 ha to 116.11 ha, which was mainly converted from mudflats and moved seaward significantly. Analyses of the S. alterniflora expansion patterns in the six subzones indicated that the expansion trends varied with different environmental circumstances and human activities. Land reclamation, mangrove replantation, and mudflat aquaculture caused significant losses of S. alterniflora. The number of invaded gaps increased and S. alterniflora patches adjacent to mangrove forests became much larger and more aggregated during 2003–2015 (the class area increased from 12.13 ha to 49.76 ha and the aggregation index increased from 91.15 to 94.65). We thus concluded that S. alterniflora invasion in the Zhangjiang Estuary had seriously increased and that measures should be taken considering the characteristics shown in different subzones. This study provides an example of applying GE imagery to monitor invasive plants and illustrates that this approach can aid in the development of governmental policies employed to control S. alterniflora invasion. View Full-TextItem Spatial Expansion and Soil Organic Carbon Storage Changes of Croplands in the Sanjiang Plain, China(MDPI, 2017-04) Man, Weidong; Yu, Hao; Li, Lin; Liu, Mingyue; Mao, Dehua; Ren, Chunying; Wang, Zongming; Jia, Mingming; Miao, Zhenghong; Lu, Chunyan; Li, Huiying; Earth Sciences, School of ScienceSoil is the largest pool of terrestrial organic carbon in the biosphere and interacts strongly with the atmosphere, climate and land cover. Remote sensing (RS) and geographic information systems (GIS) were used to study the spatio-temporal dynamics of croplands and soil organic carbon density (SOCD) in the Sanjiang Plain, to estimate soil organic carbon (SOC) storage. Results show that croplands increased with 10,600.68 km2 from 1992 to 2012 in the Sanjiang Plain. Area of 13,959.43 km2 of dry farmlands were converted into paddy fields. Cropland SOC storage is estimated to be 1.29 ± 0.27 Pg C (1 Pg = 103 Tg = 1015 g) in 2012. Although the mean value of SOCD for croplands decreased from 1992 to 2012, the SOC storage of croplands in the top 1 m in the Sanjiang Plain increased by 70 Tg C (1220 to 1290). This is attributed to the area increases of cropland. The SOCD of paddy fields was higher and decreased more slowly than that of dry farmlands from 1992 to 2012. Conversion between dry farmlands and paddy fields and the agricultural reclamation from natural land-use types significantly affect the spatio-temporal patterns of cropland SOCD in the Sanjiang Plain. Regions with higher and lower SOCD values move northeast and westward, respectively, which is almost consistent with the movement direction of centroids for paddy fields and dry farmlands in the study area. Therefore, these results were verified. SOC storages in dry farmlands decreased by 17.5 Tg·year−1 from 1992 to 2012, whilst paddy fields increased by 21.0 Tg·C·year−1.