- Browse by Author
Browsing by Author "Li, Huang"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item BECA: A Software Tool for Integrated Visualization of Human Brain Data(Springer, 2017) Li, Huang; Fang, Shiaofen; Zigon, Bob; Sporns, Olaf; Saykin, Andrew J.; Goñi, Joaquin; Shen, Li; Computer and Information Science, School of ScienceVisualization plays an important role in helping neuroscientist understanding human brain data. Most publicly available software focuses on visualizing a specific brain imaging modality. Here we present an extensible visualization platform, BECA, which employ a plugin architecture to facilitate rapid development and deployment of visualization for human brain data. This paper will introduce the architecture and discuss some important design decisions in implementing the BECA platform and its visualization plugins.Item Brain explorer for connectomic analysis(Springer, 2017-08-23) Li, Huang; Fang, Shiaofen; Contreras, Joey A.; West, John D.; Risacher, Shannon L.; Wang, Yang; Sporns, Olaf; Saykin, Andrew J.; Goñi, Joaquín; Shen, Li; Radiology and Imaging Sciences, School of MedicineVisualization plays a vital role in the analysis of multimodal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional, and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomical structure. In this paper, new surface texture techniques are developed to map non-spatial attributes onto both 3D brain surfaces and a planar volume map which is generated by the proposed volume rendering technique, spherical volume rendering. Two types of non-spatial information are represented: (1) time series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image-based phenotypic biomarkers for brain diseases.Item Genome-wide variant-based study of genetic effects with the largest neuroanatomic coverage(BMC, 2021-04-30) Li, Jin; Liu, Wenjie; Li, Huang; Chen, Feng; Luo, Haoran; Bao, Peihua; Li, Yanzhao; Jiang, Hailong; Gao, Yue; Liang, Hong; Fang, Shiaofen; Computer and Information Science, School of ScienceBackground: Brain image genetics provides enormous opportunities for examining the effects of genetic variations on the brain. Many studies have shown that the structure, function, and abnormality (e.g., those related to Alzheimer's disease) of the brain are heritable. However, which genetic variations contribute to these phenotypic changes is not completely clear. Advances in neuroimaging and genetics have led us to obtain detailed brain anatomy and genome-wide information. These data offer us new opportunities to identify genetic variations such as single nucleotide polymorphisms (SNPs) that affect brain structure. In this paper, we perform a genome-wide variant-based study, and aim to identify top SNPs or SNP sets which have genetic effects with the largest neuroanotomic coverage at both voxel and region-of-interest (ROI) levels. Based on the voxelwise genome-wide association study (GWAS) results, we used the exhaustive search to find the top SNPs or SNP sets that have the largest voxel-based or ROI-based neuroanatomic coverage. For SNP sets with >2 SNPs, we proposed an efficient genetic algorithm to identify top SNP sets that can cover all ROIs or a specific ROI. Results: We identified an ensemble of top SNPs, SNP-pairs and SNP-sets, whose effects have the largest neuroanatomic coverage. Experimental results on real imaging genetics data show that the proposed genetic algorithm is superior to the exhaustive search in terms of computational time for identifying top SNP-sets. Conclusions: We proposed and applied an informatics strategy to identify top SNPs, SNP-pairs and SNP-sets that have genetic effects with the largest neuroanatomic coverage. The proposed genetic algorithm offers an efficient solution to accomplish the task, especially for identifying top SNP-sets.Item GPU Accelerated Browser for Neuroimaging Genomics(Springer, 2018-10) Zigon, Bob; Li, Huang; Yao, Xiaohui; Fang, Shiaofen; Hasan, Mohammad Al; Yan, Jingwen; Moore, Jason H.; Saykin, Andrew J.; Shen, Li; Alzheimer’s Disease Neuroimaging Initiative; Computer and Information Science, School of ScienceNeuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.Item Integrated Visualization of Human Brain Connectome Data(Springer, 2015-08) Li, Huang; Fang, Shiaofen; Goni, Joaquin; Contreras, Joey A.; Liang, Yanhua; Cai, Chengtao; West, John D.; Risacher, Shannon L.; Wang, Yang; Sporns, Olaf; Saykin, Andrew J.; Shen, Li; Department of Radiology and Imaging Sciences, IU School of MedicineVisualization plays a vital role in the analysis of multi-modal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. New surface texture techniques are developed to map non-spatial attributes onto the brain surfaces from MRI scans. Two types of non-spatial information are represented: (1) time-series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image based phenotypic biomarkers for brain diseases.Item Interactive Visualization of Deep Learning for 3D Brain Data Analysis(IEEE Xplore, 2021-10) Li, Huang; Fang, Shiaofen; Goñi, Joaquín; Saykin, Andrew J.; Shen, Li; Computer and Information Science, School of ScienceWith multiple hidden layers and massive combinations of features and weights, deep learning models are hard to understand, and even more difficult to interact with. In this paper we describe a visual analytics platform to help with the understanding of and interaction with the deep learning process of human brain image data. A brain connectome network dataset is used to train a classifier for the diagnosis of Alzheimer's Disease (AD). 3D rendering of brain images is integrated into the interactive visualization process of a deep neural network to bring contextual information of the application to the analysis framework. A backpropagation algorithm is applied to track the image features that are captured by each node in the hidden layers. Our results demonstrate that interactive visualization can not only help the understanding of the deep learning process, but also provide a platform for domain experts to interact with and assist in the learning process, which can potentially enhance the interpretability and accuracy of the analysis.Item Joint Exploration and Mining of Memory-Relevant Brain Anatomic and Connectomic Patterns via a Three-Way Association Model(IEE, 2018-04) Yan, Jingwen; Liu, Kefei; Li, Huang; Amico, Enrico; Risacher, Shannon L.; Wu, Yu-Chien; Fang, Shiaofen; Sporns, Olaf; Saykin, Andrew J.; Goñi, Joaquín; Shen, Li; BioHealth Informatics, School of Informatics and ComputingEarly change in memory performance is a key symptom of many brain diseases, but its underlying mechanism remains largely unknown. While structural MRI has been playing an essential role in revealing potentially relevant brain regions, increasing availability of diffusion MRI data (e.g., Human Connectome Project (HCP)) provides excellent opportunities for exploration of their complex coordination. Given the complementary information held in these two imaging modalities, we hypothesize that studying them as a whole, rather than individually, and exploring their association will provide us valuable insights of the memory mechanism. However, many existing association methods, such as sparse canonical correlation analysis (SCCA), only manage to handle two-way association and thus cannot guarantee the selection of biomarkers and associations to be memory relevant. To overcome this limitation, we propose a new outcome-relevant SCCA model (OSCCA) together with a new algorithm to enable the three-way associations among brain connectivity, anatomic structure and episodic memory performance. In comparison with traditional SCCA, we demonstrate the effectiveness of our model with both synthetic and real data from the HCP cohort.Item Visual Analytics and Interactive Machine Learning for Human Brain Data(2019-08) Li, Huang; Fang, Shiaofen; Shen, Li; Mukhopadhyay, SnehasisThis study mainly focuses on applying visualization techniques on human brain data for data exploration, quality control, and hypothesis discovery. It mainly consists of two parts: multi-modal data visualization and interactive machine learning. For multi-modal data visualization, a major challenge is how to integrate structural, functional and connectivity data to form a comprehensive visual context. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. For interactive machine learning, we propose a new visual analytics approach to interactive machine learning. In this approach, multi-dimensional data visualization techniques are employed to facilitate user interactions with the machine learning process. This allows dynamic user feedback in different forms, such as data selection, data labeling, and data correction, to enhance the efficiency of model building.Item Webots-based Simulator for Biped Navigation in Human-living Environments(IEEE, 2015-12) Xia, Zeyang; Wang, Xiaojun; Gan, Yangzhou; Cox, Thomas-Glyn Hunter; Zhang, Xue; Li, Huang; Xiong, Jing; Department of Biomedical Engineering, School of Engineering and TechnologyNavigation is one of the key issues of biped robot, especially in complicated and uncertain human-living environment. There have been challenges for ensuring the stability, efficiency and security of the biped navigation system. In this paper, a framework utilizing sampling-based footstep planner is proposed for the simulation of the biped navigation. Sensor fusion method is adopted to process and generate the correlated environment information for footstep planning. Two specific experiments have been conducted to validate the functionality and performance of the proposed framework.