- Browse by Author
Browsing by Author "Li, Claire H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Clinical Trial Simulation to Evaluate Population Pharmacokinetics and Food Effect: Capturing Abiraterone and Nilotinib Exposures(John Wiley & Sons, Inc., 2015-05) Li, Claire H.; Sherer, Eric A.; Lewis, Lionel D.; Bies, Robert R.; Department of Medicine, IU School of MedicineThe objectives of this study were to determine (1) the accuracy with which individual patient level exposure can be determined and (2) whether a known food effect can be identified in a trial simulation of a typical population pharmacokinetic trial. Clinical trial simulations were undertaken using NONMEM VII to assess a typical oncology pharmacokinetic trial design. Nine virtual trials for each compound were performed for combinations of different level of between-occasion variability, number of patients in the trial and magnitude of a food covariate on oral clearance. Less than 5% and 20% bias and precision were obtained in individual clearance estimated for both abiraterone and nilotinib using this design. This design resulted biased and imprecise population clearance estimates for abiraterone. The between-occasion variability in most trials was captured with less than 30% of percent bias and precision. The food effect was detectable as a statistically significant covariate on oral clearance for abiraterone and nilotinib with percent bias and precision of the food covariate less than 20%. These results demonstrate that clinical trial simulation can be used to explore the ability of specific trial designs to evaluate the power to identify individual and population level exposures,covariate and variability effects.Item CYP3A5 genotype and its impact on vincristine pharmacokinetics and development of neuropathy in Kenyan children with cancer(Wiley, 2018-03) Skiles, Jodi L.; Chiang, ChienWei; Li, Claire H.; Martin, Steve; Smith, Ellen L.; Olbara, Gilbert; Jones, David R.; Vik, Terry A.; Mostert, Saskia; Abbink, Floor; Kaspers, Gertjan J.; Li, Lang; Njuguna, Festus; Sajdyk, Tammy J.; Renbarger, Jamie L.; Pediatrics, School of MedicineBACKGROUND: Vincristine (VCR) is a critical part of treatment in pediatric malignancies and is associated with dose-dependent peripheral neuropathy (vincristine-induced peripheral neuropathy [VIPN]). Our previous findings show VCR metabolism is regulated by the CYP3A5 gene. Individuals who are low CYP3A5 expressers metabolize VCR slower and experience more severe VIPN as compared to high expressers. Preliminary observations suggest that Caucasians experience more severe VIPN as compared to nonCaucasians. PROCEDURE: Kenyan children with cancer who were undergoing treatment including VCR were recruited for a prospective cohort study. Patients received IV VCR 2 mg/m2 /dose with a maximum dose of 2.5 mg as part of standard treatment protocols. VCR pharmacokinetics (PK) sampling was collected via dried blood spot cards and genotyping was conducted for common functional variants in CYP3A5, multi-drug resistance 1 (MDR1), and microtubule-associated protein tau (MAPT). VIPN was assessed using five neuropathy tools. RESULTS: The majority of subjects (91%) were CYP3A5 high-expresser genotype. CYP3A5 low-expresser genotype subjects had a significantly higher dose and body surface area normalized area under the curve than CYP3A5 high-expresser genotype subjects (0.28 ± 0.15 hr·m2 /l vs. 0.15 ± 0.011 hr·m2 /l, P = 0.027). Regardless of which assessment tool was utilized, minimal neuropathy was detected in this cohort. There was no difference in the presence or severity of neuropathy assessed between CYP3A5 high- and low-expresser genotype groups. CONCLUSION: Genetic factors are associated with VCR PK. Due to the minimal neuropathy observed in this cohort, there was no demonstrable association between genetic factors or VCR PK with development of VIPN. Further studies are needed to determine the role of genetic factors in optimizing dosing of VCR for maximal benefit.Item Prediction of brain clozapine and norclozapine concentrations in humans from a scaled pharmacokinetic model for rat brain and plasma pharmacokinetics(Springer (Biomed Central Ltd.), 2014) Li, Claire H.; Stratford, Robert E.; Velez de Mendizabal, Nieves; Cremers, Thomas I. F. H.; Pollock, Bruce G.; Mulsant, Benoit H.; Remington, Gary; Bies, Robert R.; Department of Medicine, IU School of MedicineBACKGROUND: Clozapine is highly effective in treatment-resistant schizophrenia, although, there remains significant variability in the response to this drug. To better understand this variability, the objective of this study was to predict brain extracellular fluid (ECF) concentrations and receptor occupancy of clozapine and norclozapine in human central nervous system by translating plasma and brain ECF pharmacokinetic (PK) relationships in the rat and coupling these with known human disposition of clozapine in the plasma. METHODS: Unbound concentrations of clozapine and norclozapine were measured in rat brain ECF using quantitative microdialysis after subcutaneous administration of a 10 mg/kg single dose of clozapine or norclozapine. These data were linked with plasma concentrations obtained in the same rats to develop a plasma-brain ECF compartmental model. Parameters describing brain ECF disposition were then allometrically scaled and linked with published human plasma PK to predict human ECF concentrations. Subsequently, prediction of human receptor occupancy at several CNS receptors was based on an effect model that related the predicted ECF concentrations to published concentration-driven receptor occupancy parameters. RESULTS: A one compartment model with first order absorption and elimination best described clozapine and norclozapine plasma concentrations in rats. A delay in the transfer of clozapine and norclozapine from plasma to the brain ECF compartment was captured using a transit compartment model approach. Human clozapine and norclozapine concentrations in brain ECF were simulated, and from these the median percentage of receptor occupancy of dopamine-2, serotonin-2A, muscarinic-1, alpha-1 adrenergic, alpha-2 adrenergic and histamine-1 for clozapine, and dopamine-2 for norclozapine were consistent with values reported in the literature. CONCLUSIONS: A PK model that relates clozapine and norclozapine disposition in rat plasma and brain, including blood-brain barrier transport, was developed. Using allometry and published human plasma PK, the model was successfully translated to predict clozapine and norclozapine concentrations and accordant receptor occupancy of both agents in human brain. These predicted exposure and occupancy measures at several receptors that bind clozapine may be employed to extend our understanding of clozapine's complex behavioral effects in humans.