- Browse by Author
Browsing by Author "Li, C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Genetic variants in the folate metabolic pathway genes predict melanoma-specific survival(Oxford University Press, 2020-10) Dai, W.; Liu, H.; Liu, Y.; Xu, X.; Qian, D.; Luo, S.; Cho, E.; Zhu, D.; Amos, C.I.; Fang, S.; Lee, J.E.; Li, X.; Nan, H.; Li, C.; Wei, Q.; Epidemiology, School of Public HealthBackground: Folate metabolism plays an important role in DNA methylation and nucleic acid synthesis and thus may function as a regulatory factor in cancer development. Genome-wide association studies (GWASs) have identified some single-nucleotide polymorphisms (SNPs) associated with cutaneous melanoma-specific survival (CMSS), but no SNPs were found in genes involved in the folate metabolic pathway. Objectives: To examine associations between SNPs in folate metabolic pathway genes and CMSS. Methods: We comprehensively evaluated 2645 (422 genotyped and 2223 imputed) common SNPs in folate metabolic pathway genes from a published GWAS of 858 patients from The University of Texas MD Anderson Cancer Center and performed the validation in another GWAS of 409 patients from the Nurses' Health Study and Health Professionals Follow-up Study, in which 95/858 (11·1%) and 48/409 (11·7%) patients died of cutaneous melanoma, respectively. Results: We identified two independent SNPs (MTHFD1 rs1950902 G>A and ALPL rs10917006 C>T) to be associated with CMSS in both datasets, and their meta-analysis yielded an allelic hazards ratio of 1·75 (95% confidence interval 1·32-2·32, P = 9·96 × 10-5 ) and 2·05 (1·39-3·01, P = 2·84 × 10-4 ), respectively. The genotype-phenotype correlation analyses provided additional support for the biological plausibility of these two variants' roles in tumour progression, suggesting that variation in SNP-related mRNA expression levels is likely to be the mechanism underlying the observed associations with CMSS. Conclusions: Two possibly functional genetic variants, MTHFD1 rs1950902 and ALPL rs10917006, were likely to be independently or jointly associated with CMSS, which may add to personalized treatment in the future, once further validated. What is already known about this topic? Existing data show that survival rates vary among patients with melanoma with similar clinical characteristics; therefore, it is necessary to identify additional complementary biomarkers for melanoma-specific prognosis. A hypothesis-driven approach, by pooling the effects of single-nucleotide polymorphisms (SNPs) in a specific biological pathway as genetic risk scores, may provide a prognostic utility, and genetic variants of genes in folate metabolism have been reported to be associated with cancer risk. What does this study add? Two genetic variants in the folate metabolic pathway genes, MTHFD1 rs1950902 and ALPL rs10917006, are significantly associated with cutaneous melanoma-specific survival (CMSS). What is the translational message? The identification of genetic variants will make a risk-prediction model possible for CMSS. The SNPs in the folate metabolic pathway genes, once validated in larger studies, may be useful in the personalized management and treatment of patients with cutaneous melanoma.Item Immune signatures underlying post-acute COVID-19 lung sequelae(AAAS, 2021-11) Cheon, I. S.; Li, C.; Son, Y. M.; Goplen, N. P.; Wu, Y.; Cassmann, T.; Wang, Z.; Wei, X.; Tang, J.; Li, Y.; Marlow, H.; Hughes, S.; Hammel, L.; Cox, T. M.; Goddery, E.; Ayasoufi, K.; Weiskopf, D.; Boonyaratanakornkit, J.; Dong, H.; Li, H.; Chakraborty, R.; Johnson, A. J.; Edell, E.; Taylor, J. J.; Kaplan, M. H.; Sette, A.; Bartholmai, B. J.; Kern, R.; Vassallo, R.; Sun, J.; Microbiology and Immunology, School of MedicineSevere coronavirus disease 2019 (COVID-19) pneumonia survivors often exhibit long-term pulmonary sequelae, but the underlying mechanisms or associated local and systemic immune correlates are not known. Here, we have performed high-dimensional characterization of the pathophysiological and immune traits of aged COVID-19 convalescents, and correlated the local and systemic immune profiles with pulmonary function and lung imaging. We found that chronic lung impairment was accompanied by persistent respiratory immune alterations. We showed that functional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–specific memory T and B cells were enriched at the site of infection compared with those of blood. Detailed evaluation of the lung immune compartment revealed that dysregulated respiratory CD8+ T cell responses were associated with the impaired lung function after acute COVID-19. Single-cell transcriptomic analysis identified the potential pathogenic subsets of respiratory CD8+ T cells contributing to persistent tissue conditions after COVID-19. Our results have revealed pathophysiological and immune traits that may support the development of lung sequelae after SARS-CoV-2 pneumonia in older individuals, with implications for the treatment of chronic COVID-19 symptoms.