- Browse by Author
Browsing by Author "Levine, Jami"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Height Versus Body Surface Area to Normalize Cardiovascular Measurements in Children Using the Pediatric Heart Network Echocardiographic Z-Score Database(Springer, 2021) Mahgerefteh, Joseph; Lai, Wyman; Colan, Steven; Trachtenberg, Felicia; Gongwer, Russel; Stylianou, Mario; Bhat, Aarti H.; Goldberg, David; McCrindle, Brian; Frommelt, Peter; Sachdeva, Ritu; Shuplock, Jacqueline Marie; Spurney, Christopher; Troung, Dongngan; Cnota, James F.; Camarda, Joseph A.; Levine, Jami; Pignatelli, Ricardo; Altmann, Karen; van der Velde, Mary; Thankavel, Poonam Punjwani; Chowdhury, Shahryar; Srivastava, Shubhika; Johnson, Tiffanie R.; Lopez, Leo; Pediatric Heart Network Investigators; Pediatrics, School of MedicineNormalizing cardiovascular measurements for body size allows for comparison among children of different ages and for distinguishing pathologic changes from normal physiologic growth. Because of growing interest to use height for normalization, the aim of this study was to develop height-based normalization models and compare them to body surface area (BSA)-based normalization for aortic and left ventricular (LV) measurements. The study population consisted of healthy, non-obese children between 2 and 18 years of age enrolled in the Pediatric Heart Network Echo Z-Score Project. The echocardiographic study parameters included proximal aortic diameters at 3 locations, LV end-diastolic volume, and LV mass. Using the statistical methodology described in the original project, Z-scores based on height and BSA were determined for the study parameters and tested for any clinically significant relationships with age, sex, race, ethnicity, and body mass index (BMI). Normalization models based on height versus BSA were compared among underweight, normal weight, and overweight (but not obese) children in the study population. Z-scores based on height and BSA were calculated for the 5 study parameters and revealed no clinically significant relationships with age, sex, race, and ethnicity. Normalization based on height resulted in lower Z-scores in the underweight group compared to the overweight group, whereas normalization based on BSA resulted in higher Z-scores in the underweight group compared to the overweight group. In other words, increasing BMI had an opposite effect on height-based Z-scores compared to BSA-based Z-scores. Allometric normalization based on height and BSA for aortic and LV sizes is feasible. However, height-based normalization results in higher cardiovascular Z-scores in heavier children, and BSA-based normalization results in higher cardiovascular Z-scores in lighter children. Further studies are needed to assess the performance of these approaches in obese children with or without cardiac disease.