- Browse by Author
Browsing by Author "Lesage, Suzanne"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies(American Medical Association, 2013) Nalls, Michael A.; Duran, Raquel; Lopez, Grisel; Kurzawa-Akanbi, Marzena; McKeith, Ian G.; Chinnery, Patrick F.; Morris, Christopher M.; Theuns, Jessie; Crosiers, David; Cras, Patrick; Engelborghs, Sebastiaan; De Deyn, Peter Paul; Van Broeckhoven, Christine; Mann, David M. A.; Snowden, Julie; Pickering-Brown, Stuart; Halliwell, Nicola; Davidson, Yvonne; Gibbons, Linda; Harris, Jenny; Sheerin, Una-Marie; Bras, Jose; Hardy, John; Clark, Lorraine; Marder, Karen; Honig, Lawrence S.; Berg, Daniela; Maetzler, Walter; Brockmann, Kathrin; Gasser, Thomas; Novellino, Fabiana; Quattrone, Aldo; Annesi, Grazia; De Marco, Elvira Valeria; Rogaeva, Ekaterina; Masellis, Mario; Black, Sandra E.; Bilbao, Juan M.; Foroud, Tatiana; Ghetti, Bernardino; Nichols, William C.; Pankratz, Nathan; Halliday, Glenda; Lesage, Suzanne; Klebe, Stephan; Durr, Alexandra; Duyckaerts, Charles; Brice, Alexis; Giasson, Benoit I.; Trojanowski, John Q.; Hurtig, Howard I.; Tayebi, Nahid; Landazabal, Claudia; Knight, Melanie A.; Keller, Margaux; Singleton, Andrew B.; Wolfsberg, Tyra G.; Sidransky, Ellen; Medicine, School of MedicineImportance: While mutations in glucocerebrosidase (GBA1) are associated with an increased risk for Parkinson disease (PD), it is important to establish whether such mutations are also a common risk factor for other Lewy body disorders. Objective: To establish whether GBA1 mutations are a risk factor for dementia with Lewy bodies (DLB). DESIGN We compared genotype data on patients and controls from 11 centers. Data concerning demographics, age at onset, disease duration, and clinical and pathological features were collected when available. We conducted pooled analyses using logistic regression to investigate GBA1 mutation carrier status as predicting DLB or PD with dementia status, using common control subjects as a reference group. Random-effects meta-analyses were conducted to account for additional heterogeneity. Setting: Eleven centers from sites around the world performing genotyping. Participants: Seven hundred twenty-one cases met diagnostic criteria for DLB and 151 had PD with dementia. We compared these cases with 1962 controls from the same centers matched for age, sex, and ethnicity. Main outcome measures: Frequency of GBA1 mutations in cases and controls. RESULTS We found a significant association between GBA1 mutation carrier status and DLB, with an odds ratio of 8.28 (95% CI, 4.78-14.88). The odds ratio for PD with dementia was 6.48 (95% CI, 2.53-15.37). The mean age at diagnosis of DLB was earlier in GBA1 mutation carriers than in noncarriers (63.5 vs 68.9 years; P < .001), with higher disease severity scores. Conclusions and relevance: Mutations in GBA1 are a significant risk factor for DLB. GBA1 mutations likely play an even larger role in the genetic etiology of DLB than in PD, providing insight into the role of glucocerebrosidase in Lewy body disease.Item Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture(Springer Nature, 2021-03) Chia, Ruth; Sabir, Marya S.; Bandres-Ciga, Sara; Saez-Atienzar, Sara; Reynolds, Regina H.; Gustavsson, Emil; Walton, Ronald L.; Ahmed, Sarah; Viollet, Coralie; Ding, Jinhui; Makarious, Mary B.; Diez-Fairen, Monica; Portley, Makayla K.; Shah, Zalak; Abramzon, Yevgeniya; Hernandez, Dena G.; Blauwendraat, Cornelis; Stone, David J.; Eicher, John; Parkkinen, Laura; Ansorge, Olaf; Clark, Lorraine; Honig, Lawrence S.; Marder, Karen; Lemstra, Afina; St. George-Hyslop, Peter; Londos, Elisabet; Morgan, Kevin; Lashley, Tammaryn; Warner, Thomas T.; Jaunmuktane, Zane; Galasko, Douglas; Santana, Isabel; Tienari, Pentti J.; Myllykangas, Liisa; Oinas, Minna; Cairns, Nigel J.; Morris, John C.; Halliday, Glenda M.; Van Deerlin, Vivianna M.; Trojanowski, John Q.; Grassano, Maurizio; Calvo, Andrea; Mora, Gabriele; Canosa, Antonio; Floris, Gianluca; Bohannan, Ryan C.; Brett, Francesca; Gan-Or, Ziv; Geiger, Joshua T.; Moore, Anni; May, Patrick; Krüger, Rejko; Goldstein, David S.; Lopez, Grisel; Tayebi, Nahid; Sidransky, Ellen; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio; Shakkottai, Vikram G.; Perkins, Matthew; Newell, Kathy L.; Gasser, Thomas; Schulte, Claudia; Landi, Francesco; Salvi, Erika; Cusi, Daniele; Masliah, Eliezer; Kim, Ronald C.; Caraway, Chad A.; Monuki, Edwin S.; Brunetti, Maura; Dawson, Ted M.; Rosenthal, Liana S.; Albert, Marilyn S.; Pletnikova, Olga; Troncoso, Juan C.; Flanagan, Margaret E.; Mao, Qinwen; Bigio, Eileen H.; Rodríguez-Rodríguez, Eloy; Infante, Jon; Lage, Carmen; González-Aramburu, Isabel; Sanchez-Juan, Pascual; Ghetti, Bernardino; Keith, Julia; Black, Sandra E.; Masellis, Mario; Rogaeva, Ekaterina; Duyckaerts, Charles; Brice, Alexis; Lesage, Suzanne; Xiromerisiou, Georgia; Barrett, Matthew J.; Tilley, Bension S.; Gentleman, Steve; Logroscino, Giancarlo; Serrano, Geidy E.; Beach, Thomas G.; McKeith, Ian G.; Thomas, Alan J.; Attems, Johannes; Morris, Christopher M.; Palmer, Laura; Love, Seth; Troakes, Claire; Al-Sarraj, Safa; Hodges, Angela K.; Aarsland, Dag; Klein, Gregory; Kaiser, Scott M.; Woltjer, Randy; Pastor, Pau; Bekris, Lynn M.; Leverenz, James B.; Besser, Lilah M.; Kuzma, Amanda; Renton, Alan E.; Goate, Alison; Bennett, David A.; Scherzer, Clemens R.; Morris, Huw R.; Ferrari, Raffaele; Albani, Diego; Pickering-Brown, Stuart; Faber, Kelley; Kukull, Walter A.; Morenas-Rodriguez, Estrella; Lleó, Alberto; Fortea, Juan; Alcolea, Daniel; Clarimon, Jordi; Nalls, Mike A.; Ferrucci, Luigi; Resnick, Susan M.; Tanaka, Toshiko; Foroud, Tatiana M.; Graff-Radford, Neill R.; Wszolek, Zbigniew K.; Ferman, Tanis; Boeve, Bradley F.; Hardy, John A.; Topol, Eric J.; Torkamani, Ali; Singleton, Andrew B.; Ryten, Mina; Dickson, Dennis W.; Chiò, Adriano; Ross, Owen A.; Gibbs, J. Raphael; Dalgard, Clifton L.; Traynor, Bryan J.; Scholz, Sonja W.; Pathology and Laboratory Medicine, School of MedicineThe genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.Item Underrepresented Populations in Parkinson's Genetics Research: Current Landscape and Future Directions(Wiley, 2022) Schumacher-Schuh, Artur Francisco; Bieger, Andrei; Okunoye, Olaitan; Mok, Kin Ying; Lim, Shen-Yang; Bardien, Soraya; Ahmad-Annuar, Azlina; Santos-Lobato, Bruno Lopes; Zschornack Strelow, Matheus; Salama, Mohamed; Rao, Shilpa C.; Zewde, Yared Zenebe; Dindayal, Saiesha; Azar, Jihan; Kukkle Prashanth, Lingappa; Rajan, Roopa; Noyce, Alastair J.; Okubadejo, Njideka; Rizig, Mie; Lesage, Suzanne; Mata, Ignacio Fernandez; Global Parkinson’s Genetics Program (GP2); Medical and Molecular Genetics, School of MedicineBackground: Human genetics research lacks diversity; over 80% of genome-wide association studies have been conducted on individuals of European ancestry. In addition to limiting insights regarding disease mechanisms, disproportionate representation can create disparities preventing equitable implementation of personalized medicine. Objective: This systematic review provides an overview of research involving Parkinson's disease (PD) genetics in underrepresented populations (URP) and sets a baseline to measure the future impact of current efforts in those populations. Methods: We searched PubMed and EMBASE until October 2021 using search strings for "PD," "genetics," the main "URP," and and the countries in Latin America, Caribbean, Africa, Asia, and Oceania (excluding Australia and New Zealand). Inclusion criteria were original studies, written in English, reporting genetic results on PD from non-European populations. Two levels of independent reviewers identified and extracted information. Results: We observed imbalances in PD genetic studies among URPs. Asian participants from Greater China were described in the majority of the articles published (57%), but other populations were less well studied; for example, Blacks were represented in just 4.0% of the publications. Also, although idiopathic PD was more studied than monogenic forms of the disease, most studies analyzed a limited number of genetic variants. We identified just nine studies using a genome-wide approach published up to 2021, including URPs. Conclusion: This review provides insight into the significant lack of population diversity in PD research highlighting the immediate need for better representation. The Global Parkinson's Genetics Program (GP2) and similar initiatives aim to impact research in URPs, and the early metrics presented here can be used to measure progress in the field of PD genetics in the future.