- Browse by Author
Browsing by Author "Lemoine, Laetitia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Astroglial tracer BU99008 detects multiple binding sites in Alzheimer's disease brain(Springer Nature, 2021) Kumar, Amit; Koistinen, Niina A.; Malarte, Mona-Lisa; Nennesmo, Inger; Ingelsson, Martin; Ghetti, Bernardino; Lemoine, Laetitia; Nordberg, Agneta; Pathology and Laboratory Medicine, School of MedicineWith reactive astrogliosis being established as one of the hallmarks of Alzheimer's disease (AD), there is high interest in developing novel positron emission tomography (PET) tracers to detect early astrocyte reactivity. BU99008, a novel astrocytic PET ligand targeting imidazoline-2 binding sites (I2BS) on astrocytes, might be a suitable candidate. Here we demonstrate for the first time that BU99008 could visualise reactive astrogliosis in postmortem AD brains and propose a multiple binding site [Super-high-affinity (SH), High-affinity (HA) and Low-affinity (LA)] model for BU99008, I2BS specific ligands (2-BFI and BU224) and deprenyl in AD and control (CN) brains. The proportion (%) and affinities of these sites varied significantly between the BU99008, 2-BFI, BU224 and deprenyl in AD and CN brains. Regional binding studies demonstrated significantly higher 3H-BU99008 binding in AD brain regions compared to CN. Comparative autoradiography studies reinforced these findings, showing higher specific binding for 3H-BU99008 than 3H-Deprenyl in sporadic AD brain compared to CN, implying that they might have different targets. The data clearly shows that BU99008 could detect I2BS expressing reactive astrocytes with good selectivity and specificity and hence be a potential attractive clinical astrocytic PET tracer for gaining further insight into the role of reactive astrogliosis in AD.Item Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains(BMC, 2017-11-11) Lemoine, Laetitia; Gillberg, Per-Göran; Svedberg, Marie; Stepanov, Vladimir; Jia, Zhisheng; Huang, Jinghai; Nag, Sangram; Tian, He; Ghetti, Bernardino; Okamura, Nobuyuki; Higuchi, Makoto; Halldin, Christer; Nordberg, Agneta; Pathology and Laboratory Medicine, School of MedicineBackground The aim of this study was to compare the binding properties of several tau positron emission tomography tracers—THK5117, THK5351, T807 (also known as AV1451; flortaucipir), and PBB3—head to head in the same human brain tissue. Methods Binding assays were performed to compare the regional distribution of 3H-THK5117 and 3H-THK5351 in postmortem tissue from three Alzheimer’s disease (AD) cases and three control subjects in frontal and temporal cortices as well as in the hippocampus. Competition binding assays between THK5351, THK5117, PBB3, and T807, as well as off-target binding of THK5117 and T807 toward monoamine oxidase B (MAO-B), were performed using binding assays in brain homogenates and autoradiography of three AD cases. Results Regional binding of 3H-THK5117 and 3H-THK5351 was similar, except in the temporal cortex, which showed higher 3H-THK5117 binding. Saturation studies demonstrated two binding sites for 3H-THK5351 (K d1 = 5.6 nM, Bmax = 76 pmol/g; K d2 = 1 nM, Bmax = 40 pmol/g). Competition studies in the hippocampus between 3H-THK5351 and unlabeled THK5351, THK5117, and T807 revealed super-high-affinity sites for all three tracers (THK5351 K i = 0.1 pM; THK5117 K i = 0.3 pM; T807 K i = 0.2 pM) and an additional high-affinity site (THK5351 K i = 16 nM; THK5117 K i = 20 nM; T807 K i = 78nM). 18F-T807, 11C-THK5351, and 11C-PBB3 autoradiography of large frozen sections from three AD brains showed similar regional binding for the three tracers, with lower binding intensity for 11C-PBB3. Unlabeled THK5351 and T807 displaced 11C-THK5351 to a similar extent and a lower extent, respectively, compared with 11C-PBB3. Competition with the MAO-B inhibitor 3H-l-deprenyl was observed for THK5117 and T807 in the hippocampus (THK5117 K i = 286 nM; T807 K i = 227 nM) and the putamen (THK5117 K i = 148 nM; T807 K i = 135 nM). 3H-THK5351 binding was displaced using autoradiography competition with unlabeled THK5351 and T807 in cortical areas by 70–80% and 60–77%, respectively, in the basal ganglia, whereas unlabeled deprenyl displaced 3H-THK5351 binding by 40% in the frontal cortex and 50% in the basal ganglia. Conclusions THK5351, THK5117, and T807 seem to target similar binding sites, but with different affinities, whereas PBB3 seems to target its own binding site. Both THK5117 and T807 demonstrated off-target binding in the hippocampus and putamen with a ten times lower binding affinity to the MAO-B inhibitor deprenyl compared with 3H-THK5351. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0325-z) contains supplementary material, which is available to authorized users.Item Visualization of regional tau deposits using (3)H-THK5117 in Alzheimer brain tissue(BioMed Central, 2015-07-02) Lemoine, Laetitia; Saint-Aubert, Laure; Marutle, Amelia; Antoni, Gunnar; Eriksson, Jonas P.; Ghetti, Bernardino; Okamura, Nobuyuki; Nennesmo, Inger; Gillberg, Per-Göran; Nordberg, Agneta; Department of Pathology and Laboratory Medicine, IU School of MedicineINTRODUCTION: The accumulation of neurofibrillary tangles, composed of aggregated hyperphosphorylated tau protein, starts spreading early in specific regions in the course of Alzheimer's disease (AD), correlating with the progression of memory dysfunction. The non-invasive imaging of tau could therefore facilitate the early diagnosis of AD, differentiate it from other dementing disorders and allow evaluation of tau immunization therapy outcomes. In this study we characterized the in vitro binding properties of THK5117, a tentative radiotracer for positron emission tomography (PET) imaging of tau brain deposits. RESULTS: Saturation and competition binding studies of (3)H-THK5117 in post-mortem AD brain tissue showed the presence of multiple binding sites. THK5117 binding was significantly higher in hippocampal (p < 0.001) and temporal (p < 0.01) tissue homogenates in AD compared to controls. Autoradiography studies with (3)H-THK5117 was performed on large frozen brain sections from three AD cases who had been followed clinically and earlier undergone in vivo (18)F-FDG PET investigations. The three AD cases showed distinct differences in regional THK5117 binding that were also observed in tau immunohistopathology as well as in clinical presentation. A negative correlation between in vivo (18)F-FDG PET and in vitro (3)H-THK5117 autoradiography was observed in two of the three AD cases. CONCLUSIONS: This study supports that new tau PET tracers will provide further understanding on the role of tau pathology in the diversity of the clinical presentation in AD.