- Browse by Author
Browsing by Author "Lee, Ji H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Amyloid seeding of transthyretin by ex vivo cardiac fibrils and its inhibition(National Academy of Sciences, 2018-07-17) Saelices, Lorena; Chung, Kevin; Lee, Ji H.; Cohn, Whitaker; Whitelegge, Julian P.; Benson, Merrill D.; Eisenberg, David S.; Pathology and Laboratory Medicine, School of MedicineEach of the 30 human amyloid diseases is associated with the aggregation of a particular precursor protein into amyloid fibrils. In transthyretin amyloidosis (ATTR), mutant or wild-type forms of the serum carrier protein transthyretin (TTR), synthesized and secreted by the liver, convert to amyloid fibrils deposited in the heart and other organs. The current standard of care for hereditary ATTR is liver transplantation, which replaces the mutant TTR gene with the wild-type gene. However, the procedure is often followed by cardiac deposition of wild-type TTR secreted by the new liver. Here we find that amyloid fibrils extracted from autopsied and explanted hearts of ATTR patients robustly seed wild-type TTR into amyloid fibrils in vitro. Cardiac-derived ATTR seeds can accelerate fibril formation of wild-type and monomeric TTR at acidic pH and under physiological conditions, respectively. We show that this seeding is inhibited by peptides designed to complement structures of TTR fibrils. These inhibitors cap fibril growth, suggesting an approach for halting progression of ATTR.Item A pair of peptides inhibits seeding of the hormone transporter transthyretin into amyloid fibrils(American Society for Biochemistry and Molecular Biology, 2019-04-12) Saelices, Lorena; Nguyen, Binh A.; Chung, Kevin; Wang, Yifei; Ortega, Alfredo; Lee, Ji H.; Coelho, Teresa; Bijzet, Johan; Benson, Merrill D.; Eisenberg, David S.; Pathology and Laboratory Medicine, School of MedicineThe tetrameric protein transthyretin is a transporter of retinol and thyroxine in blood, cerebrospinal fluid, and the eye, and is secreted by the liver, choroid plexus, and retinal epithelium, respectively. Systemic amyloid deposition of aggregated transthyretin causes hereditary and sporadic amyloidoses. A common treatment of patients with hereditary transthyretin amyloidosis is liver transplantation. However, this procedure, which replaces the patient's variant transthyretin with the WT protein, can fail to stop subsequent cardiac deposition, ultimately requiring heart transplantation. We recently showed that preformed amyloid fibrils present in the heart at the time of surgery can template or seed further amyloid aggregation of native transthyretin. Here we assess possible interventions to halt this seeding, using biochemical and EM assays. We found that chemical or mutational stabilization of the transthyretin tetramer does not hinder amyloid seeding. In contrast, binding of the peptide inhibitor TabFH2 to ex vivo fibrils efficiently inhibits amyloid seeding by impeding self-association of the amyloid-driving strands F and H in a tissue-independent manner. Our findings point to inhibition of amyloid seeding by peptide inhibitors as a potential therapeutic approach.Item Quantitative Analysis of Clot Deposition on Extracorporeal Life Support Membrane Oxygenators Using Digital and Scanning Electron Microscopy Imaging Techniques(Bio-protocol, 2023-09-20) Zang, Yanyi; Roberts, Teryn R.; Harea, George T.; Beely, Brendan M.; Olivera Perez, Leonardo J.; Ande, Sreedevi; Batchinsky, Maria; Lee, Ji H.; Thrailkill, Marianne A.; Reynolds, Melissa M.; Batchinsky, Andriy I.; Medicine, School of MedicineDevice-induced thrombosis remains a major complication of extracorporeal life support (ECLS). To more thoroughly understand how blood components interact with the artificial surfaces of ECLS circuit components, assessment of clot deposition on these surfaces following clinical use is urgently needed. Scanning electron microscopy (SEM), which produces high-resolution images at nanoscale level, allows visualization and characterization of thrombotic deposits on ECLS circuitry. However, methodologies to increase the quantifiability of SEM analysis of ECLS circuit components have yet to be applied clinically. To address these issues, we developed a protocol to quantify clot deposition on ECLS membrane oxygenator gas transfer fiber sheets through digital and SEM imaging techniques. In this study, ECLS membrane oxygenator fiber sheets were obtained, fixed, and imaged after use. Following a standardized process, the percentage of clot deposition on both digital images and SEM images was quantified using ImageJ through blind reviews. The interrater reliability of quantitative analysis among reviewers was evaluated. Although this protocol focused on the analysis of ECLS membrane oxygenators, it is also adaptable to other components of the ECLS circuits such as catheters and tubing. Key features: • Quantitative analysis of clot deposition using digital and scanning electron microscopy (SEM) techniques • High-resolution images at nanoscale level • Extracorporeal life support (ECLS) devices • Membrane oxygenators • Blood-contacting surfaces