- Browse by Author
Browsing by Author "Lee, Hye-Seung"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents(American Thoracic Society, 2016-08) Leigh, Margaret W.; Ferkol, Thomas W.; Davis, Stephanie D.; Lee, Hye-Seung; Rosenfeld, Margaret; Dell, Sharon D.; Sagel, Scott D.; Milla, Carlos; Olivier, Kenneth N.; Sullivan, Kelli M.; Zariwala, Maimoona A.; Pittman, Jessica E.; Shapiro, Adam J.; Carson, Johnny L.; Krischer, Jeffrey; Hazucha, Milan J.; Knowles, Michael R.; Pediatrics, School of MedicineRationale: Primary ciliary dyskinesia (PCD), a genetically heterogeneous, recessive disorder of motile cilia, is associated with distinct clinical features. Diagnostic tests, including ultrastructural analysis of cilia, nasal nitric oxide measurements, and molecular testing for mutations in PCD genes, have inherent limitations., Objectives: To define a statistically valid combination of systematically defined clinical features that strongly associates with PCD in children and adolescents., Methods: Investigators at seven North American sites in the Genetic Disorders of Mucociliary Clearance Consortium prospectively and systematically assessed individuals (aged 0–18 yr) referred due to high suspicion for PCD. The investigators defined specific clinical questions for the clinical report form based on expert opinion. Diagnostic testing was performed using standardized protocols and included nasal nitric oxide measurement, ciliary biopsy for ultrastructural analysis of cilia, and molecular genetic testing for PCD-associated genes. Final diagnoses were assigned as “definite PCD” (hallmark ultrastructural defects and/or two mutations in a PCD-associated gene), “probable/possible PCD” (no ultrastructural defect or genetic diagnosis, but compatible clinical features and nasal nitric oxide level in PCD range), and “other diagnosis or undefined.” Criteria were developed to define early childhood clinical features on the basis of responses to multiple specific queries. Each defined feature was tested by logistic regression. Sensitivity and specificity analyses were conducted to define the most robust set of clinical features associated with PCD., Measurements and Main Results: From 534 participants 18 years of age and younger, 205 were identified as having “definite PCD” (including 164 with two mutations in a PCD-associated gene), 187 were categorized as “other diagnosis or undefined,” and 142 were defined as having “probable/possible PCD.” Participants with “definite PCD” were compared with the “other diagnosis or undefined” group. Four criteria-defined clinical features were statistically predictive of PCD: laterality defect; unexplained neonatal respiratory distress; early-onset, year-round nasal congestion; and early-onset, year-round wet cough (adjusted odds ratios of 7.7, 6.6, 3.4, and 3.1, respectively). The sensitivity and specificity based on the number of criteria-defined clinical features were four features, 0.21 and 0.99, respectively; three features, 0.50 and 0.96, respectively; and two features, 0.80 and 0.72, respectively., Conclusions: Systematically defined early clinical features could help identify children, including infants, likely to have PCD., Clinical trial registered with ClinicalTrials.gov (NCT00323167).Item Primary Ciliary Dyskinesia: Longitudinal Study of Lung Disease by Ultrastructure Defect and Genotype(American Thoracic Society, 2019-01-15) Davis, Stephanie D.; Rosenfeld, Margaret; Lee, Hye-Seung; Ferkol, Thomas W.; Sagel, Scott D.; Dell, Sharon D.; Milla, Carlos; Pittman, Jessica E.; Shapiro, Adam J.; Sullivan, Kelli M.; Nykamp, Keith R.; Krischer, Jeffrey P.; Zariwala, Maimoona A.; Knowles, Michael R.; Leigh, Margaret W.; Pediatrics, School of MedicineRATIONALE: In primary ciliary dyskinesia, factors leading to disease heterogeneity are poorly understood. OBJECTIVES: To describe early lung disease progression in primary ciliary dyskinesia and identify associations between ultrastructural defects and genotypes with clinical phenotype. METHODS: This was a prospective, longitudinal (5 yr), multicenter, observational study. Inclusion criteria were less than 19 years at enrollment and greater than or equal to two annual study visits. Linear mixed effects models including random slope and random intercept were used to evaluate longitudinal associations between the ciliary defect group (or genotype group) and clinical features (percent predicted FEV1 and weight and height z-scores). MEASUREMENTS AND MAIN RESULTS: A total of 137 participants completed 732 visits. The group with absent inner dynein arm, central apparatus defects, and microtubular disorganization (IDA/CA/MTD) (n = 41) were significantly younger at diagnosis and in mixed effects models had significantly lower percent predicted FEV1 and weight and height z-scores than the isolated outer dynein arm defect (n = 55) group. Participants with CCDC39 or CCDC40 mutations (n = 34) had lower percent predicted FEV1 and weight and height z-scores than those with DNAH5 mutations (n = 36). For the entire cohort, percent predicted FEV1 decline was heterogeneous with a mean (SE) decline of 0.57 (0.25) percent predicted/yr. Rate of decline was different from zero only in the IDA/MTD/CA group (mean [SE], -1.11 [0.48] percent predicted/yr; P = 0.02). CONCLUSIONS: Participants with IDA/MTD/CA defects, which included individuals with CCDC39 or CCDC40 mutations, had worse lung function and growth indices compared with those with outer dynein arm defects and DNAH5 mutations, respectively. The only group with a significant lung function decline over time were participants with IDA/MTD/CA defects.