- Browse by Author
Browsing by Author "Lee, Carrie B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Coronary Artery Calcifications and Cardiac Risk after Radiotherapy for Stage III Lung Cancer(Elsevier, 2022) Wang, Kyle; Malkin, Hayley E.; Patchett, Nicholas D.; Pearlstein, Kevin A.; Heiling, Hillary M.; McCabe, Sean D.; Deal, Allison M.; Mavroidis, Panayiotis; Oakey, Mary; Fenoli, Jeffrey; Lee, Carrie B.; Klein, J. Larry; Jensen, Brian C.; Stinchcombe, Thomas E.; Marks, Lawrence B.; Weiner, Ashley A.; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthPurpose: Heart dose and heart disease increase the risk for cardiac toxicity associated with radiation therapy. We hypothesized that computed tomography (CT) coronary calcifications are associated with cardiac toxicity and may help ascertain baseline heart disease. Methods and materials: We analyzed the cumulative incidence of cardiac events in patients with stage III non-small cell lung cancer receiving median 74 Gy on prospective dose-escalation trials. Events were defined as symptomatic effusion, pericarditis, unstable angina, infarction, significant arrhythmia, and/or heart failure. Coronary calcifications were delineated on simulation CTs using radiation software program (130 HU threshold). Calcifications were defined as "none," "low," and "high," with median volume dividing low and high. Results: Of 109 patients, 26 had cardiac events at median 26 months (range, 1-84 months) after radiation therapy. Median follow-up in surviving patients was 8.8 years (range, 2.3-17.3). On simulation CTs, 64 patients (59%) had coronary calcifications with median volume 0.2 cm3 (range, 0.01-8.3). Only 16 patients (15%) had baseline coronary artery disease. Cardiac events occurred in 7% (3 of 45), 29% (9 of 31), and 42% (14 of 33) of patients with no, low, and high calcifications, respectively. Calcification burden was associated with cardiac toxicity on univariate (low vs none: hazard ratio [HR] 5.0, P = .015; high vs none: HR 8.1, P < .001) and multivariate analyses (low vs none: HR 7.0, P = .005, high vs none: HR 10.6, P < .001, heart mean dose: HR 1.1/Gy, P < .001). Four-year competing risk-adjusted event rates for no, low, and high calcifications were 4%, 23%, and 34%, respectively. Conclusions: The presence of coronary calcifications is a cardiac risk factor that can identify high-risk patients for medical referral and help guide clinicians before potentially cardiotoxic cancer treatments.Item Status of Cancer Care at Network Sites of the Nation's Academic Cancer Centers(National Comprehensive Cancer Network, 2021-03-11) Gerson, Stanton L.; Shaw, Kate; Harrison, Louis B.; Holcombe, Randall F.; Hutchins, Laura; Lee, Carrie B.; Loehrer, Patrick J., Sr.; Mulkerin, Daniel; Purcell, W. Thomas; Teston, Lois; Weiner, Louis M.; Weiner, George J.; Medicine, School of MedicineBackground: Cancer care coordination across major academic medical centers and their networks is evolving rapidly, but the spectrum of organizational efforts has not been described. We conducted a mixed-methods survey of leading cancer centers and their networks to document care coordination and identify opportunities to improve geographically dispersed care. Methods: A mixed-methods survey was sent to 91 cancer centers in the United States and Canada. We analyzed the number and locations of network sites; access to electronic medical records (EMRs); clinical research support and participation at networks; use of patient navigators, care paths, and quality measures; and physician workforce. Responses were collected via Qualtrics software between September 2017 and December 2018. Results: Of the 69 responding cancer centers, 74% were NCI-designated. Eighty-seven percent of respondents were part of a matrix health system, and 13% were freestanding. Fifty-six reported having network sites. Forty-three respondents use navigators for disease-specific populations, and 24 use them for all patients. Thirty-five respondents use ≥1 types of care path. Fifty-seven percent of networks had complete, integrated access to their main center's EMRs. Thirty-nine respondents said the main center provides funding for clinical research at networks, with 22 reporting the main center provides all funding. Thirty-five said the main center provided pharmacy support at the networks, with 15 indicating the main center provides 100% pharmacy support. Certification program participation varied extensively across networks. Conclusions: The data show academic cancer centers have extensive involvement in network cancer care, often extending into rural communities. Coordinating care through improved clinical trial access and greater use of patient navigation, care paths, coordinated EMRs, and quality measures is likely to improve patient outcomes. Although it is premature to draw firm conclusions, the survey results are appropriate for mapping next steps and data queries.