- Browse by Author
Browsing by Author "Lechner, Joseph"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item BATF sustains homeostasis and functionality of bone marrow Treg cells to preserve homeostatic regulation of hematopoiesis and development of B cells(Frontiers Media, 2023-02-22) Tikka, Chiranjeevi; Beasley, Lindsay; Xu, Chengxian; Yang, Jing; Cooper, Scott; Lechner, Joseph; Gutch, Sarah; Kaplan, Mark H.; Capitano, Maegan; Yang, Kai; Pediatrics, School of MedicineBone marrow Treg cells (BM Tregs) orchestrate stem cell niches crucial for hematopoiesis. Yet little is known about the molecular mechanisms governing BM Treg homeostasis and function. Here we report that the transcription factor BATF maintains homeostasis and functionality of BM Tregs to facilitate homeostatic regulation of hematopoiesis and B cell development. Treg-specific ablation of BATF profoundly compromised proportions of BM Tregs associated with reduced expression of Treg effector molecules, including CD44, ICOS, KLRG1, and TIGIT. Moreover, BATF deficiency in Tregs led to increased numbers of hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and granulocyte-macrophage progenitors (GMPs), while reducing the functionality of myeloid progenitors and the generation of common lymphoid progenitors. Furthermore, Tregs lacking BATF failed to support the development of B cells in the BM. Mechanistically, BATF mediated IL-7 signaling to promote expression of effector molecules on BM Tregs and their homeostasis. Our studies reveal a previously unappreciated role for BATF in sustaining BM Treg homeostasis and function to ensure hematopoiesis.Item Genetic modulation of protein expression in rat brain(Elsevier, 2025-02-21) Li, Ling; Wu, Zhiping; Guarracino, Andrea; Villani, Flavia; Kong, Dehui; Mancieri, Ariana; Zhang, Aijun; Saba, Laura; Chen, Hao; Brozka, Hana; Vales, Karel; Senko, Anna N.; Kempermann, Gerd; Stuchlik, Ales; Pravenec, Michal; Lechner, Joseph; Prins, Pjotr; Mathur, Ramkumar; Lu, Lu; Yang, Kai; Peng, Junmin; Williams, Robert W.; Wang, Xusheng; Pediatrics, School of MedicineGenetic variations in protein expression are implicated in a broad spectrum of common diseases and complex traits but remain less explored compared to mRNA and classical phenotypes. This study systematically analyzed brain proteomes in a rat family using tandem mass tag (TMT)-based quantitative mass spectrometry. We quantified 8,119 proteins across two parental strains (SHR/Olalpcv and BN-Lx/Cub) and 29 HXB/BXH recombinant inbred (RI) strains, identifying 597 proteins with differential expression and 464 proteins linked to cis-acting quantitative trait loci (pQTLs). Proteogenomics identified 95 variant peptides, and sex-specific analyses revealed both shared and distinct cis-pQTLs. We improved the ability to pinpoint candidate genes underlying pQTLs by utilizing the rat pangenome and explored the connections between pQTLs in rats and human disorders. Collectively, this study highlights the value of large proteo-genetic datasets in elucidating protein modulation in the brain and its links to complex central nervous system (CNS) traits.