ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Le, Jialiang"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Peek into the Future Camera-based Occupant Sensing in Configurable Cabins for Autonomous Vehicles
    (IEEE Xplore, 2021-09-19) Prabu, Avinash; Tian, Renran; Li, Lingxi; Le, Jialiang; Sundararajan, Srinivasan; Barbat, Saeed; Electrical and Computer Engineering, School of Engineering and Technology
    The development of fully autonomous vehicles (AVs) can potentially eliminate drivers and introduce unprecedented seating design. However, highly flexible seat configurations may lead to occupants' unconventional poses and actions. Understanding occupant behaviors and prioritize safety features become eye-catching topics in the AV research frontier. Visual sensors have the advantages of cost-efficiency and high-fidelity imaging and become more widely applied for in-car sensing purposes. Occlusion is one big concern for this type of system in crowded car cabins. It is important but largely unknown about how a visual-sensing framework will look like to support 2-D and 3-D human pose tracking towards highly configurable seats. As one of the first studies to touch this topic, we peek into the future camera-based sensing framework via a simulation experiment. Constructed representative car-cabin, seat layouts, and occupant sizes, camera coverage from different angles and positions is simulated and calculated. The comprehensive coverage data are synthesized through an optimization process to determine the camera layout and overall occupant coverage. The results show the needs and design of a different number of cameras to fully or partially cover all the occupants with changeable configurations of up to six seats.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University