- Browse by Author
Browsing by Author "Lawrence, William"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identification of a physiologic vasculogenic fibroblast state to achieve tissue repair(Springer Nature, 2023-02-28) Pal, Durba; Ghatak, Subhadip; Singh, Kanhaiya; Abouhashem, Ahmed Safwat; Kumar, Manishekhar; El Masry, Mohamed S.; Mohanty, Sujit K.; Palakurti, Ravichand; Rustagi, Yashika; Tabasum, Saba; Khona, Dolly K.; Khanna, Savita; Kacar, Sedat; Srivastava, Rajneesh; Bhasme, Pramod; Verma, Sumit S.; Hernandez, Edward; Sharma, Anu; Reese, Diamond; Verma, Priyanka; Ghosh, Nandini; Gorain, Mahadeo; Wan, Jun; Liu, Sheng; Liu, Yunlong; Castro, Natalia Higuita; Gnyawali, Surya C.; Lawrence, William; Moore, Jordan; Perez, Daniel Gallego; Roy, Sashwati; Yoder, Mervin C.; Sen, Chandan K.; Surgery, School of MedicineTissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.Item Nanotransfection-based vasculogenic cell reprogramming drives functional recovery in a mouse model of ischemic stroke(American Association for the Advancement of Science, 2021-03-19) Lemmerman, Luke R.; Balch, Maria H.H.; Moore, Jordan T.; Alzate-Correa, Diego; Rincon-Benavides, Maria A.; Salazar-Puerta, Ana; Gnyawali, Surya; Harris, Hallie N.; Lawrence, William; Ortega-Pineda, Lilibeth; Wilch, Lauren; Risser, Ian B.; Maxwell, Aidan J.; Duarte-Sanmiguel, Silvia; Dodd, Daniel; Guio-Vega, Gina P.; McTigue, Dana M.; Arnold, W. David; Nimjee, Shahid M.; Sen, Chandan K.; Khanna, Savita; Rink, Cameron; Higuita-Castro, Natalia; Gallego-Perez, Daniel; Surgery, School of MedicineIschemic stroke causes vascular and neuronal tissue deficiencies that could lead to substantial functional impairment and/or death. Although progenitor-based vasculogenic cell therapies have shown promise as a potential rescue strategy following ischemic stroke, current approaches face major hurdles. Here, we used fibroblasts nanotransfected with Etv2, Foxc2, and Fli1 (EFF) to drive reprogramming-based vasculogenesis, intracranially, as a potential therapy for ischemic stroke. Perfusion analyses suggest that intracranial delivery of EFF-nanotransfected fibroblasts led to a dose-dependent increase in perfusion 14 days after injection. MRI and behavioral tests revealed ~70% infarct resolution and up to ~90% motor recovery for mice treated with EFF-nanotransfected fibroblasts. Immunohistological analysis confirmed increases in vascularity and neuronal cellularity, as well as reduced glial scar formation in response to treatment with EFF-nanotransfected fibroblasts. Together, our results suggest that vasculogenic cell therapies based on nanotransfection-driven (i.e., nonviral) cellular reprogramming represent a promising strategy for the treatment of ischemic stroke.