- Browse by Author
Browsing by Author "Landman, Bennett A."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Leveraging longitudinal diffusion MRI data to quantify differences in white matter microstructural decline in normal and abnormal aging(bioRxiv, 2023-05-18) Archer, Derek B.; Schilling, Kurt; Shashikumar, Niranjana; Jasodanand, Varuna; Moore, Elizabeth E.; Pechman, Kimberly R.; Bilgel, Murat; Beason-Held, Lori L.; An, Yang; Shafer, Andrea; Ferrucci, Luigi; Risacher, Shannon L.; Gifford, Katherine A.; Landman, Bennett A.; Jefferson, Angela L.; Saykin, Andrew J.; Resnick, Susan M.; Hohman, Timothy J.; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineIntroduction: It is unclear how rates of white matter microstructural decline differ between normal aging and abnormal aging. Methods: Diffusion MRI data from several well-established longitudinal cohorts of aging [Alzheimer's Neuroimaging Initiative (ADNI), Baltimore Longitudinal Study of Aging (BLSA), Vanderbilt Memory & Aging Project (VMAP)] was free-water corrected and harmonized. This dataset included 1,723 participants (age at baseline: 72.8±8.87 years, 49.5% male) and 4,605 imaging sessions (follow-up time: 2.97±2.09 years, follow-up range: 1-13 years, mean number of visits: 4.42±1.98). Differences in white matter microstructural decline in normal and abnormal agers was assessed. Results: While we found global decline in white matter in normal/abnormal aging, we found that several white matter tracts (e.g., cingulum bundle) were vulnerable to abnormal aging. Conclusions: There is a prevalent role of white matter microstructural decline in aging, and future large-scale studies in this area may further refine our understanding of the underlying neurodegenerative processes. Highlights: Longitudinal data was free-water corrected and harmonizedGlobal effects of white matter decline were seen in normal and abnormal agingThe free-water metric was most vulnerable to abnormal agingCingulum free-water was the most vulnerable to abnormal aging.Item Metrics reloaded: recommendations for image analysis validation(Springer Nature, 2024) Maier-Hein, Lena; Reinke, Annika; Godau, Patrick; Tizabi, Minu D.; Buettner, Florian; Christodoulou, Evangelia; Glocker, Ben; Isensee, Fabian; Kleesiek, Jens; Kozubek, Michal; Reyes, Mauricio; Riegler, Michael A.; Wiesenfarth, Manuel; Kavur, A. Emre; Sudre, Carole H.; Baumgartner, Michael; Eisenmann, Matthias; Heckmann-Nötzel, Doreen; Rädsch, Tim; Acion, Laura; Antonelli, Michela; Arbel, Tal; Bakas, Spyridon; Benis, Arriel; Blaschko, Matthew B.; Cardoso, M. Jorge; Cheplygina, Veronika; Cimini, Beth A.; Collins, Gary S.; Farahani, Keyvan; Ferrer, Luciana; Galdran, Adrian; van Ginneken, Bram; Haase, Robert; Hashimoto, Daniel A.; Hoffman, Michael M.; Huisman, Merel; Jannin, Pierre; Kahn, Charles E.; Kainmueller, Dagmar; Kainz, Bernhard; Karargyris, Alexandros; Karthikesalingam, Alan; Kofler, Florian; Kopp-Schneider, Annette; Kreshuk, Anna; Kurc, Tahsin; Landman, Bennett A.; Litjens, Geert; Madani, Amin; Maier-Hein, Klaus; Martel, Anne L.; Mattson, Peter; Meijering, Erik; Menze, Bjoern; Moons, Karel G. M.; Müller, Henning; Nichyporuk, Brennan; Nickel, Felix; Petersen, Jens; Rajpoot, Nasir; Rieke, Nicola; Saez-Rodriguez, Julio; Sánchez, Clara I.; Shetty, Shravya; van Smeden, Maarten; Summers, Ronald M.; Taha, Abdel A.; Tiulpin, Aleksei; Tsaftaris, Sotirios A.; Van Calster, Ben; Varoquaux, Gaël; Jäger, Paul F.; Pathology and Laboratory Medicine, School of MedicineIncreasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.Item Sex, racial, and APOE-ε4 allele differences in longitudinal white matter microstructure in multiple cohorts of aging and Alzheimer’s disease(bioRxiv, 2024-06-12) Peterson, Amalia; Sathe, Aditi; Zaras, Dimitrios; Yang, Yisu; Durant, Alaina; Deters, Kacie D.; Shashikumar, Niranjana; Pechman, Kimberly R.; Kim, Michael E.; Gao, Chenyu; Khairi, Nazirah Mohd; Li, Zhiyuan; Yao, Tianyuan; Huo, Yuankai; Dumitrescu, Logan; Gifford, Katherine A.; Wilson, Jo Ellen; Cambronero, Francis; Risacher, Shannon L.; Beason-Held, Lori L.; An, Yang; Arfanakis, Konstantinos; Erus, Guray; Davatzikos, Christos; Tosun, Duygu; Toga, Arthur W.; Thompson, Paul M.; Mormino, Elizabeth C.; Zhang, Panpan; Schilling, Kurt; Alzheimer’s Disease Neuroimaging Initiative (ADNI); BIOCARD Study Team; Alzheimer’s Disease Sequencing Project (ADSP); Albert, Marilyn; Kukull, Walter; Biber, Sarah A.; Landman, Bennett A.; Johnson, Sterling C.; Schneider, Julie; Barnes, Lisa L.; Bennett, David A.; Jefferson, Angela L.; Resnick, Susan M.; Saykin, Andrew J.; Hohman, Timothy J.; Archer, Derek B.; Radiology and Imaging Sciences, School of MedicineIntroduction: The effects of sex, race, and Apolipoprotein E (APOE) - Alzheimer's disease (AD) risk factors - on white matter integrity are not well characterized. Methods: Diffusion MRI data from nine well-established longitudinal cohorts of aging were free-water (FW)-corrected and harmonized. This dataset included 4,702 participants (age=73.06 ± 9.75) with 9,671 imaging sessions over time. FW and FW-corrected fractional anisotropy (FAFWcorr) were used to assess differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. Results: Sex differences in FAFWcorr in association and projection tracts, racial differences in FAFWcorr in projection tracts, and APOE-ε4 differences in FW limbic and occipital transcallosal tracts were most pronounced. Discussion: There are prominent differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. This work adds to our understanding of disparities in AD. Additional work to understand the etiology of these differences is warranted.Item Understanding metric-related pitfalls in image analysis validation(ArXiv, 2023-09-25) Reinke, Annika; Tizabi, Minu D.; Baumgartner, Michael; Eisenmann, Matthias; Heckmann-Nötzel, Doreen; Kavur, A. Emre; Rädsch, Tim; Sudre, Carole H.; Acion, Laura; Antonelli, Michela; Arbel, Tal; Bakas, Spyridon; Benis, Arriel; Blaschko, Matthew B.; Buettner, Florian; Cardoso, M. Jorge; Cheplygina, Veronika; Chen, Jianxu; Christodoulou, Evangelia; Cimini, Beth A.; Collins, Gary S.; Farahani, Keyvan; Ferrer, Luciana; Galdran, Adrian; Van Ginneken, Bram; Glocker, Ben; Godau, Patrick; Haase, Robert; Hashimoto, Daniel A.; Hoffman, Michael M.; Huisman, Merel; Isensee, Fabian; Jannin, Pierre; Kahn, Charles E.; Kainmueller, Dagmar; Kainz, Bernhard; Karargyris, Alexandros; Karthikesalingam, Alan; Kenngott, Hannes; Kleesiek, Jens; Kofler, Florian; Kooi, Thijs; Kopp-Schneider, Annette; Kozubek, Michal; Kreshuk, Anna; Kurc, Tahsin; Landman, Bennett A.; Litjens, Geert; Madani, Amin; Maier-Hein, Klaus; Martel, Anne L.; Mattson, Peter; Meijering, Erik; Menze, Bjoern; Moons, Karel G. M.; Müller, Henning; Nichyporuk, Brennan; Nickel, Felix; Petersen, Jens; Rafelski, Susanne M.; Rajpoot, Nasir; Reyes, Mauricio; Riegler, Michael A.; Rieke, Nicola; Saez-Rodriguez, Julio; Sánchez, Clara I.; Shetty, Shravya; Summers, Ronald M.; Taha, Abdel A.; Tiulpin, Aleksei; Tsaftaris, Sotirios A.; Van Calster, Ben; Varoquaux, Gaël; Yaniv, Ziv R.; Jäger, Paul F.; Maier-Hein, Lena; Pathology and Laboratory Medicine, School of MedicineValidation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.Item White matter microstructural metrics are sensitively associated with clinical staging in Alzheimer's disease(Wiley, 2023-05-17) Yang, Yisu; Schilling, Kurt; Shashikumar, Niranjana; Jasodanand, Varuna; Moore, Elizabeth E.; Pechman, Kimberly R.; Bilgel, Murat; Beason-Held, Lori L.; An, Yang; Shafer, Andrea; Risacher, Shannon L.; Landman, Bennett A.; Jefferson, Angela L.; Saykin, Andrew J.; Resnick, Susan M.; Hohman, Timothy J.; Archer, Derek B.; Alzheimer's Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineIntroduction: White matter microstructure may be abnormal along the Alzheimer's disease (AD) continuum. Methods: Diffusion magnetic resonance imaging (dMRI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 627), Baltimore Longitudinal Study of Aging (BLSA, n = 684), and Vanderbilt Memory & Aging Project (VMAP, n = 296) cohorts were free-water (FW) corrected and conventional, and FW-corrected microstructural metrics were quantified within 48 white matter tracts. Microstructural values were subsequently harmonized using the Longitudinal ComBat technique and inputted as independent variables to predict diagnosis (cognitively unimpaired [CU], mild cognitive impairment [MCI], AD). Models were adjusted for age, sex, race/ethnicity, education, apolipoprotein E (APOE) ε4 carrier status, and APOE ε2 carrier status. Results: Conventional dMRI metrics were associated globally with diagnostic status; following FW correction, the FW metric itself exhibited global associations with diagnostic status, but intracellular metric associations were diminished. Discussion: White matter microstructure is altered along the AD continuum. FW correction may provide further understanding of the white matter neurodegenerative process in AD. Highlights: Longitudinal ComBat successfully harmonized large-scale diffusion magnetic resonance imaging (dMRI) metrics.Conventional dMRI metrics were globally sensitive to diagnostic status. Free-water (FW) correction mitigated intracellular associations with diagnostic status.The FW metric itself was globally sensitive to diagnostic status. Multivariate conventional and FW-corrected models may provide complementary information.