- Browse by Author
Browsing by Author "Lancaster, Makayla S."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Investigation into Tissue-Specific Mechanisms of Mitochondrial Dysfunction: Models of SUCLA2 Deficiency and a Screen for Potential Genetic Modifiers(2023-11) Lancaster, Makayla S.; Graham, Brett H.; Kim, Jungsu; Hoffman-Longtin, Krista; White, Kenneth E.With no currently effective treatments available, mitochondrial diseases are one of the most common forms of inherited multisystem disease. Primary disorders of the mitochondria affect an estimated 1 in 4,300 people with typical onset in early childhood. Mitochondrial disorders are classically defined by defects in the mitochondrial powerhouse, or respiratory chain (RC). Therefore, they are uniquely complex as the proteins within the RC are encoded by two separate genomes – nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). The mitochondrial genome encodes 13 protein genes within the RC, with the remaining mitochondrial proteome being nuclear encoded. Therefore, mitochondrial disorders result from pathogenic variants within either genome. While mitochondrial disorders can affect multiple tissue symptoms, organs with high energy demand, such as the brain and skeletal muscle, are most typically affected; thus, mitochondrial disease typically manifests as an encephalomyopathy. A wide range of symptoms, including developmental delay, seizures, strokes, and sensorineural hearing loss have been associated with mitochondrial dysfunction. In short, however, investigation into the pathogenic mechanisms of mitochondrial disorders has proven difficult due to the wide clinical and genetic heterogeneity associated with the disorders. Therefore, this project seeks to investigate pathways of mitochondrial dysfunction using two genetic approaches. First, reverse genetics tools are used to generate tissue-specific mouse models of succinyl-CoA synthetase deficiency, which is a known cause of mitochondrial disease in humans. In parallel, forward genetics is used to screen for variation in mitochondrial phenotypes in a genetically diverse population of mice to identify potential genetic modifiers of mitochondrial function and health. Using both forward and reverse genetics approaches, these studies will allow for the investigation into tissue-specific mitochondrial pathogenesis in novel mouse models, as well as broadly characterize tissue-specific mitochondrial function in vivo. Taken together, both genetic approaches are used to broaden understanding of tissue-specific mitochondrial function in health and disease.Item Loss of succinyl-CoA synthetase in mouse forebrain results in hypersuccinylation with perturbed neuronal transcription and metabolism(Elsevier, 2023) Lancaster, Makayla S.; Kim, Byungwook; Doud, Emma H.; Tate, Mason D.; Sharify, Ahmad D.; Gao, Hongyu; Chen, Duojiao; Simpson, Ed; Gillespie, Patrick; Chu, Xiaona; Miller, Marcus J.; Wang, Yue; Liu, Yunlong; Mosley, Amber L.; Kim, Jungsu; Graham, Brett H.; Medical and Molecular Genetics, School of MedicineLysine succinylation is a subtype of protein acylation associated with metabolic regulation of succinyl-CoA in the tricarboxylic acid cycle. Deficiency of succinyl-CoA synthetase (SCS), the tricarboxylic acid cycle enzyme catalyzing the interconversion of succinyl-CoA to succinate, results in mitochondrial encephalomyopathy in humans. This report presents a conditional forebrain-specific knockout (KO) mouse model of Sucla2, the gene encoding the ATP-specific beta isoform of SCS, resulting in postnatal deficiency of the entire SCS complex. Results demonstrate that accumulation of succinyl-CoA in the absence of SCS leads to hypersuccinylation within the murine cerebral cortex. Specifically, increased succinylation is associated with functionally significant reduced activity of respiratory chain complex I and widescale alterations in chromatin landscape and gene expression. Integrative analysis of the transcriptomic data also reveals perturbations in regulatory networks of neuronal transcription in the KO forebrain. Together, these findings provide evidence that protein succinylation plays a significant role in the pathogenesis of SCS deficiency.Item Succinyl-CoA Synthetase Dysfunction as a Mechanism of Mitochondrial Encephalomyopathy: More than Just an Oxidative Energy Deficit(MDPI, 2023-06-27) Lancaster, Makayla S.; Graham, Brett H.; Medical and Molecular Genetics, School of MedicineBiallelic pathogenic variants in subunits of succinyl-CoA synthetase (SCS), a tricarboxylic acid (TCA) cycle enzyme, are associated with mitochondrial encephalomyopathy in humans. SCS catalyzes the interconversion of succinyl-CoA to succinate, coupled to substrate-level phosphorylation of either ADP or GDP, within the TCA cycle. SCS-deficient encephalomyopathy typically presents in infancy and early childhood, with many patients succumbing to the disease during childhood. Common symptoms include abnormal brain MRI, basal ganglia lesions and cerebral atrophy, severe hypotonia, dystonia, progressive psychomotor regression, and growth deficits. Although subunits of SCS were first identified as causal genes for progressive metabolic encephalomyopathy in the early 2000s, recent investigations are now beginning to unravel the pathomechanisms underlying this metabolic disorder. This article reviews the current understanding of SCS function within and outside the TCA cycle as it relates to the complex and multifactorial mechanisms underlying SCS-related mitochondrial encephalomyopathy.Item Sucla2 Knock‐Out in Skeletal Muscle Yields Mouse Model of Mitochondrial Myopathy With Muscle Type–Specific Phenotypes(Wiley, 2024) Lancaster, Makayla S.; Hafen, Paul; Law, Andrew S.; Matias, Catalina; Meyer, Timothy; Fischer, Kathryn; Miller, Marcus; Hao, Chunhai; Gillespie, Patrick; McKinzie, David; Brault, Jeffrey J.; Graham, Brett H.; Medical and Molecular Genetics, School of MedicineBackground: Pathogenic variants in subunits of succinyl-CoA synthetase (SCS) are associated with mitochondrial encephalomyopathy in humans. SCS catalyses the conversion of succinyl-CoA to succinate coupled with substrate-level phosphorylation of either ADP or GDP in the TCA cycle. This report presents a muscle-specific conditional knock-out (KO) mouse model of Sucla2, the ADP-specific beta subunit of SCS, generating a novel in vivo model of mitochondrial myopathy. Methods: The mouse model was generated using the Cre-Lox system, with the human skeletal actin (HSA) promoter driving Cre-recombination of a CRISPR-Cas9-generated Sucla2 floxed allele within skeletal muscle. Inactivation of Sucla2 was validated using RT-qPCR and western blot, and both enzyme activity and serum metabolites were quantified by mass spectrometry. To characterize the model in vivo, whole-body phenotyping was conducted, with mice undergoing a panel of strength and locomotor behavioural assays. Additionally, ex vivo contractility experiments were performed on the soleus (SOL) and extensor digitorum longus (EDL) muscles. SOL and EDL cryosections were also subject to imaging analyses to assess muscle fibre-specific phenotypes. Results: Molecular validation confirmed 68% reduction of Sucla2 transcript within the mutant skeletal muscle (p < 0.001) and 95% functionally reduced SUCLA2 protein (p < 0.0001). By 3 weeks of age, Sucla2 KO mice were 44% the size of controls by body weight (p < 0.0001). Mutant mice also exhibited 34%-40% reduced grip strength (p < 0.01) and reduced spontaneous exercise, spending about 88% less cumulative time on a running wheel (p < 0.0001). Contractile function was also perturbed in a muscle-specific manner; although no genotype-specific deficiencies were seen in EDL function, SUCLA2-deficient SOL muscles generated 40% less specific tetanic force (p < 0.0001), alongside slower contraction and relaxation rates (p < 0.001). Similarly, a SOL-specific threefold increase in mitochondria (p < 0.0001) was observed, with qualitatively increased staining for both COX and SDH, and the proportion of Type 1 myosin heavy chain expressing fibres within the SOL was nearly doubled (95% increase, p < 0.0001) in the Sucla2 KO mice compared with that in controls. Conclusions: SUCLA2 loss within murine skeletal muscle yields a model of SCS-deficient mitochondrial myopathy with reduced body weight, muscle weakness and exercise intolerance. Physiological and morphological analyses of hindlimb muscles showed remarkable differences in ex vivo function and cellular consequences between the EDL and SOL muscles, with SOL muscles significantly more impacted by Sucla2 inactivation. This novel model will provide an invaluable tool for investigations of muscle-specific and fibre type-specific pathogenic mechanisms to better understand SCS-deficient myopathy.