- Browse by Author
Browsing by Author "Lambert-Cheatham, Nathan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item An improved method for murine laser-induced choroidal neovascularization lesion quantification from optical coherence tomography images(Elsevier, 2022-08-02) Jensen, Nathan R.; Lambert-Cheatham, Nathan; Hartman, Gabriella D.; Muniyandi, Anbukkarasi; Park, Bomina; Sishtla, Kamakshi; Corson, Timothy W.; Ophthalmology, School of MedicineLaser-induced choroidal neovascularization (L-CNV) in murine models is a standard method for assessing therapies, genetics, and mechanisms relevant to the blinding eye disease neovascular or "wet" age-related macular degeneration. The ex vivo evaluation of these lesions involves confocal microscopy analysis. In vivo evaluation via optical coherence tomography (OCT) has previously been established and allows longitudinal assessment of lesion development. However, to produce robust data, evaluation of many lesions may be required, which can be a slow, arduous process. A prior, manual method for quantifying these lesions as ellipsoids from orthogonal OCT images was effective but time consuming. We therefore developed an OCT lesion quantification that is simplified, streamlined, and less time-consuming.Item Novel Insights into the Roles of Rho Kinase in Cancer(Springer, 2016-08) Wei, Lei; Surma, Michelle; Shi, Stephanie; Lambert-Cheatham, Nathan; Shi, Jianjian; Department of Pediatrics, IU School of MedicineRho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy.Item Small-molecule inhibitors of ferrochelatase are antiangiogenic agents(Elsevier, 2022-01-31) Sishtla, Kamakshi; Lambert-Cheatham, Nathan; Lee, Bit; Han, Duk Hee; Park, Jaehui; Sardar Pasha, Sheik Pran Babu; Lee, Sanha; Kwon, Sangil; Muniyandi, Anbukkarasi; Park, Bomina; Odell, Noa; Waller, Sydney; Park, Il Yeong; Lee, Soo Jae; Seo, Seung-Yong; Corson, Timothy W.; Ophthalmology, School of MedicineActivity of the heme synthesis enzyme ferrochelatase (FECH) is implicated in multiple diseases. In particular, it is a mediator of neovascularization in the eye and thus an appealing therapeutic target for preventing blindness. However, no drug-like direct FECH inhibitors are known. Here, we set out to identify small-molecule inhibitors of FECH as potential therapeutic leads using a high-throughput screening approach to identify potent inhibitors of FECH activity. A structure-activity relationship study of a class of triazolopyrimidinone hits yielded drug-like FECH inhibitors. These compounds inhibit FECH in cells, bind the active site in cocrystal structures, and are antiangiogenic in multiple in vitro assays. One of these promising compounds was antiangiogenic in vivo in a mouse model of choroidal neovascularization. This foundational work may be the basis for new therapeutic agents to combat not only ocular neovascularization but also other diseases characterized by FECH activity.