- Browse by Author
Browsing by Author "Lam, Ka-On"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Significance of radiation esophagitis: Conditional survival assessment in patients with non-small cell lung cancer(Elsevier, 2021) Yu, Hao; Lam, Ka-On; Green, Michael D.; Wu, Huanmei; Yang, Li; Wang, Weili; Jin, Jianyue; Hu, Chen; Wang, Yang; Jolly, Shruti; Kong, Feng-Ming (Spring); Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringPurpose: This study aimed to examine the effect of radiation esophagitis (RE) and the dynamics of RE on subsequent survival in non-small cell lung cancer (NSCLC) patients who underwent radiotherapy. Experimental Design: Patients with NSCLC treated with fractionated thoracic radiotherapy enrolled in prospective trials were eligible. RE was graded prospectively according to Common Terminology Criteria for Adverse Events (CTCAE) v3.0 per protocol requirement weekly during-RT and 1 month after RT. This study applied conditional survival assessment which has advantage over traditional survival analysis as it assesses the survival from the event instead of from the baseline. P-value less than 0.05 was considered to be significant. The primary endpoint is overall survival. Results: A total of 177 patients were eligible, with a median follow-up of 5 years. The presence of RE, the maximum RE grade, the evolution of RE and the onset timing of RE events were all correlated with subsequent survival. At all conditional time points, patients first presented with RE grade1 (initial RE1) had significant inferior subsequent survival (multivariable HRs median: 1.63, all P-values<0.05); meanwhile those with RE progressed had significant inferior subsequent survival than those never develop RE (multivariable HRs median: 2.08, all P-values<0.05). Multivariable Cox proportional-hazards analysis showed significantly higher C-indexes for models with inclusion of RE events than those without (all P-values<0.05). Conclusion: This study comprehensively evaluated the impact of RE with conditional survival assessment and demonstrated that RE is associated with inferior survival in NSCLC patients treated with RT.Item Weighted-Support Vector Machine Learning Classifier of Circulating Cytokine Biomarkers to Predict Radiation-Induced Lung Fibrosis in Non-Small-Cell Lung Cancer Patients(Frontiers Media, 2021-02-01) Yu, Hao; Lam, Ka-On; Wu, Huanmei; Green, Michael; Wang, Weili; Jin, Jian-Yue; Hu, Chen; Jolly, Shruti; Wang, Yang; Kong, Feng-Ming Spring; BioHealth Informatics, School of Informatics and ComputingBackground: Radiation-induced lung fibrosis (RILF) is an important late toxicity in patients with non-small-cell lung cancer (NSCLC) after radiotherapy (RT). Clinically significant RILF can impact quality of life and/or cause non-cancer related death. This study aimed to determine whether pre-treatment plasma cytokine levels have a significant effect on the risk of RILF and investigate the abilities of machine learning algorithms for risk prediction. Methods: This is a secondary analysis of prospective studies from two academic cancer centers. The primary endpoint was grade≥2 (RILF2), classified according to a system consistent with the consensus recommendation of an expert panel of the AAPM task for normal tissue toxicity. Eligible patients must have at least 6 months' follow-up after radiotherapy commencement. Baseline levels of 30 cytokines, dosimetric, and clinical characteristics were analyzed. Support vector machine (SVM) algorithm was applied for model development. Data from one center was used for model training and development; and data of another center was applied as an independent external validation. Results: There were 57 and 37 eligible patients in training and validation datasets, with 14 and 16.2% RILF2, respectively. Of the 30 plasma cytokines evaluated, SVM identified baseline circulating CCL4 as the most significant cytokine associated with RILF2 risk in both datasets (P = 0.003 and 0.07, for training and test sets, respectively). An SVM classifier predictive of RILF2 was generated in Cohort 1 with CCL4, mean lung dose (MLD) and chemotherapy as key model features. This classifier was validated in Cohort 2 with accuracy of 0.757 and area under the curve (AUC) of 0.855. Conclusions: Using machine learning, this study constructed and validated a weighted-SVM classifier incorporating circulating CCL4 levels with significant dosimetric and clinical parameters which predicts RILF2 risk with a reasonable accuracy. Further study with larger sample size is needed to validate the role of CCL4, and this SVM classifier in RILF2.