- Browse by Author
Browsing by Author "Lalani, Seema R."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item A Multicenter Analysis of Abnormal Chromosomal Microarray Findings in Congenital Heart Disease(American Heart Association, 2023) Landis, Benjamin J.; Helvaty, Lindsey R.; Geddes, Gabrielle C.; Lin, Jiuann-Huey Ivy; Yatsenko, Svetlana A.; Lo, Cecilia W.; Border, William L.; Burns Wechsler, Stephanie; Murali, Chaya N.; Azamian, Mahshid S.; Lalani, Seema R.; Hinton, Robert B.; Garg, Vidu; McBride, Kim L.; Hodge, Jennelle C.; Ware, Stephanie M.; Pediatrics, School of MedicineBackground: Chromosomal microarray analysis (CMA) provides an opportunity to understand genetic causes of congenital heart disease (CHD). The methods for describing cardiac phenotypes in patients with CMA abnormalities have been inconsistent, which may complicate clinical interpretation of abnormal testing results and hinder a more complete understanding of genotype–phenotype relationships. Methods and Results: Patients with CHD and abnormal clinical CMA were accrued from 9 pediatric cardiac centers. Highly detailed cardiac phenotypes were systematically classified and analyzed for their association with CMA abnormality. Hierarchical classification of each patient into 1 CHD category facilitated broad analyses. Inclusive classification allowing multiple CHD types per patient provided sensitive descriptions. In 1363 registry patients, 28% had genomic disorders with well‐recognized CHD association, 67% had clinically reported copy number variants (CNVs) with rare or no prior CHD association, and 5% had regions of homozygosity without CNV. Hierarchical classification identified expected CHD categories in genomic disorders, as well as uncharacteristic CHDs. Inclusive phenotyping provided sensitive descriptions of patients with multiple CHD types, which occurred commonly. Among CNVs with rare or no prior CHD association, submicroscopic CNVs were enriched for more complex types of CHD compared with large CNVs. The submicroscopic CNVs that contained a curated CHD gene were enriched for left ventricular obstruction or septal defects, whereas CNVs containing a single gene were enriched for conotruncal defects. Neuronal‐related pathways were over‐represented in single‐gene CNVs, including top candidate causative genes NRXN3, ADCY2, and HCN1. Conclusions: Intensive cardiac phenotyping in multisite registry data identifies genotype–phenotype associations in CHD patients with abnormal CMA.Item Aberrant Function of the C-Terminal Tail of HIST1H1E Accelerates Cellular Senescence and Causes Premature Aging(Cell Press, 2019-09-05) Flex, Elisabetta; Martinelli, Simone; Van Dijck, Anke; Ciolfi, Andrea; Cecchetti, Serena; Coluzzi, Elisa; Pannone, Luca; Andreoli, Cristina; Radio, Francesca Clementina; Pizzi, Simone; Carpentieri, Giovanna; Bruselles, Alessandro; Catanzaro, Giuseppina; Pedace, Lucia; Miele, Evelina; Carcarino, Elena; Ge, Xiaoyan; Chijiwa, Chieko; Lewis, M.E. Suzanne; Meuwissen, Marije; Kenis, Sandra; Van der Aa, Nathalie; Larson, Austin; Brown, Kathleen; Wasserstein, Melissa P.; Skotko, Brian G.; Begtrup, Amber; Person, Richard; Karayiorgou, Maria; Roos, J. Louw; Van Gassen, Koen L.; Koopmans, Marije; Bijlsma, Emilia K.; Santen, Gijs W.E.; Barge-Schaapveld, Daniela Q.C.M.; Ruivenkamp, Claudia A.L.; Hoffer, Mariette J.V.; Lalani, Seema R.; Streff, Haley; Craigen, William J.; Graham, Brett H.; van den Elzen, Annette P.M.; Kamphuis, Daan J.; Ounap, Katrin; Reinson, Karit; Pajusalu, Sander; Wojcik, Monica H.; Viberti, Clara; Di Gaetano, Cornelia; Bertini, Enrico; Petrucci, Simona; De Luca, Alessandro; Rota, Rossella; Ferretti, Elisabetta; Matullo, Giuseppe; Dallapiccola, Bruno; Sgura, Antonella; Walkiewicz, Magdalena; Kooy, R. Frank; Tartaglia, Marco; Medical and Molecular Genetics, School of MedicineHistones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.Item Aortopathy in the 7q11.23 microduplication syndrome(Wiley, 2015-02) Parrott, Ashley; James, Jeanne; Goldenberg, Paula; Hinton, Robert B.; Miller, Erin; Shikany, Amy; Aylsworth, Arthur S.; Kaiser-Rogers, Kathleen; Ferns, Sunita J.; Lalani, Seema R.; Ware, Stephanie M.; Department of Pediatrics, IU School of MedicineThe 7q11.23 microduplication syndrome, caused by the reciprocal duplication of the Williams-Beuren syndrome deletion region, is a genomic disorder with an emerging clinical phenotype. Dysmorphic features, congenital anomalies, hypotonia, developmental delay highlighted by variable speech delay, and autistic features are characteristic findings. Congenital heart defects, most commonly patent ductus arteriosus, have been reported in a minority of cases. Included in the duplicated region is elastin (ELN), implicated as the cause of supravalvar aortic stenosis in patients with Williams–Beuren syndrome. Here we present a series of eight pediatric patients and one adult with 7q11.23 microduplication syndrome, all of whom had aortic dilation, the opposite vascular phenotype of the typical supravalvar aortic stenosis found in Williams–Beuren syndrome. The ascending aorta was most commonly involved, while dilation was less frequently identified at the aortic root and sinotubular junction. The findings in these patients support a recommendation for cardiovascular surveillance in patients with 7q11.23 microduplication syndrome.Item Copy number variation as a genetic basis for heterotaxy and heterotaxy-spectrum congenital heart defects(Royal Society, 2016-12-19) Cowan, Jason R.; Tariq, Muhammad; Shaw, Chad; Rao, Mitchell; Belmont, John W.; Lalani, Seema R.; Smolarek, Teresa A.; Ware, Stephanie M.; Pediatrics, School of MedicineGenomic disorders and rare copy number abnormalities are identified in 15–25% of patients with syndromic conditions, but their prevalence in individuals with isolated birth defects is less clear. A spectrum of congenital heart defects (CHDs) is seen in heterotaxy, a highly heritable and genetically heterogeneous multiple congenital anomaly syndrome resulting from failure to properly establish left–right (L-R) organ asymmetry during early embryonic development. To identify novel genetic causes of heterotaxy, we analysed copy number variants (CNVs) in 225 patients with heterotaxy and heterotaxy-spectrum CHDs using array-based genotyping methods. Clinically relevant CNVs were identified in approximately 20% of patients and encompassed both known and putative heterotaxy genes. Patients were carefully phenotyped, revealing a significant association of abdominal situs inversus with pathogenic or likely pathogenic CNVs, while d-transposition of the great arteries was more frequently associated with common CNVs. Identified cytogenetic abnormalities ranged from large unbalanced translocations to smaller, kilobase-scale CNVs, including a rare, single exon deletion in ZIC3, a gene known to cause X-linked heterotaxy. Morpholino loss-of-function experiments in Xenopus support a role for one of these novel candidates, the platelet isoform of phosphofructokinase-1 (PFKP) in heterotaxy. Collectively, our results confirm a high CNV yield for array-based testing in patients with heterotaxy, and support use of CNV analysis for identification of novel biological processes relevant to human laterality., This article is part of the themed issue ‘Provocative questions in left–right asymmetry’.Item Lessons learned from additional research analyses of unsolved clinical exome cases(BioMed Central, 2017-03-21) Eldomery, Mohammad K.; Coban-Akdemir, Zeynep; Harel, Tamar; Rosenfeld, Jill A.; Gambin, Tomasz; Stray-Pedersen, Asbjørg; Küry, Sébastien; Mercier, Sandra; Lessel, Davor; Denecke, Jonas; Wiszniewski, Wojciech; Penney, Samantha; Liu, Pengfei; Bi, Weimin; Lalani, Seema R.; Schaaf, Christian P.; Wangler, Michael F.; Bacino, Carlos A.; Lewis, Richard Alan; Potocki, Lorraine; Graham, Brett H.; Belmont, John W.; Scaglia, Fernando; Orange, Jordan S.; Jhangiani, Shalini N.; Chiang, Theodore; Doddapaneni, Harsha; Hu, Jianhong; Muzny, Donna M.; Xia, Fan; Beaudet, Arthur L.; Boerwinkle, Eric; Eng, Christine M.; Plon, Sharon E.; Sutton, V. Reid; Gibbs, Richard A.; Posey, Jennifer E.; Yang, Yaping; Lupski, James R.; Department of Pathology and Laboratory Medicine, IU School of MedicineBACKGROUND: Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery. METHODS: We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent-offspring trios. Analyses performed on a research basis employed both WES from additional family members and complementary bioinformatics approaches and protocols. RESULTS: Analysis of all possible modes of Mendelian inheritance, focusing on both single nucleotide variants (SNV) and copy number variant (CNV) alleles, yielded a likely contributory variant in 36% (27/74) of cases. If one includes candidate genes with variants identified within a single family, a potential contributory variant was identified in a total of ~51% (38/74) of cases enrolled in this pilot study. The molecular diagnosis was achieved in 30/63 trios (47.6%). Besides this, the analysis workflow yielded evidence for pathogenic variants in disease-associated genes in 4/6 singleton cases (66.6%), 1/1 multiplex family involving three affected siblings, and 3/4 (75%) quartet families. Both the analytical pipeline and the collaborative efforts between the diagnostic and research laboratories provided insights that allowed recent disease gene discoveries (PURA, TANGO2, EMC1, GNB5, ATAD3A, and MIPEP) and increased the number of novel genes, defined in this study as genes identified in more than one family (DHX30 and EBF3). CONCLUSION: An efficient genomics pipeline in which clinical sequencing in a diagnostic laboratory is followed by the detailed reanalysis of unsolved cases in a research environment, supplemented with WES data from additional family members, and subject to adjuvant bioinformatics analyses including relaxed variant filtering parameters in informatics pipelines, can enhance the molecular diagnostic yield and provide mechanistic insights into Mendelian disorders. Implementing these approaches requires collaborative clinical molecular diagnostic and research efforts.Item Rationale for the Cytogenomics of Cardiovascular Malformations Consortium: A Phenotype Intensive Registry Based Approach(MDPI, 2015-04-29) Hinton, Robert B.; McBride, Kim L.; Bleyl, Steven B.; Bowles, Neil E.; Border, William L.; Garg, Vidu; Smolarek, Teresa A.; Lalani, Seema R.; Ware, Stephanie M.; Pediatrics, School of MedicineCardiovascular malformations (CVMs) are the most common birth defect, occurring in 1%-5% of all live births. Although the genetic contribution to CVMs is well recognized, the genetic causes of human CVMs are identified infrequently. In addition, a failure of systematic deep phenotyping of CVMs, resulting from the complexity and heterogeneity of malformations, has obscured genotype-phenotype correlations and contributed to a lack of understanding of disease mechanisms. To address these knowledge gaps, we have developed the Cytogenomics of Cardiovascular Malformations (CCVM) Consortium, a multi-site alliance of geneticists and cardiologists, contributing to a database registry of submicroscopic genetic copy number variants (CNVs) based on clinical chromosome microarray testing in individuals with CVMs using detailed classification schemes. Cardiac classification is performed using a modification to the National Birth Defects Prevention Study approach, and non-cardiac diagnoses are captured through ICD-9 and ICD-10 codes. By combining a comprehensive approach to clinically relevant genetic analyses with precise phenotyping, the Consortium goal is to identify novel genomic regions that cause or increase susceptibility to CVMs and to correlate the findings with clinical phenotype. This registry will provide critical insights into genetic architecture, facilitate genotype-phenotype correlations, and provide a valuable resource for the medical community.