- Browse by Author
Browsing by Author "Laird, David"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Global land-use and carbon emission implications from biochar application to cropland in the United States(Elsevier, 2020-06) Dumortier, Jerome; Dokoohaki, Hamze; Elobeid, Amani; Hayes, Dermot J.; Laird, David; Miguez, Fernando E.; School of Public and Environmental AffairsBiochar has the potential to increase crop yields when applied to agricultural land. We integrate agronomic and economic simulation models to determine the expected yield increase from biochar applications in the United States. We calculate the location-specific willingness to pay of U.S. farmers to apply biochar to their cropland if biochar increases yields over 20 years. In addition to the potential benefit of higher revenue for farmers, biochar applications also have policy implications if biochar production is combined with bio-fuel production or used to reduce greenhouse gas emissions from indirect land-use change. Thus, the results are then combined with an agricultural outlook model to determine the effects on global land-use change and net carbon emissions. Our results indicate that biochar application is most profitable for croplands in the Southeast U.S. due to the combination of high yield increases and availability of biomass to produce biochar. An increase in U.S. yields above trend by 1% for corn, soybeans, and wheat would decrease net total global emissions by 25–87 Tg of CO2-equivalent.Item Regional techno‐economic and life‐cycle analysis of the pyrolysis‐bioenergy‐biochar platform for carbon‐negative energy(Wiley, 2019-11) Li, Wenqin; Dumortier, Jerome; Dokoohaki, Hamze; Miquez, Fernando E.; Brown, Robert C.; Laird, David; Wright, Mark M.; School of Public and Environmental AffairsThis study investigates the sensitivity of greenhouse gas (GHG) emissions and the minimum fuel selling price for a 2000 metric ton day−1 integrated pyrolysis‐bioenergy‐biochar platform with respect to the biorefinery location and biomass types. The regional techno‐economic and life‐cycle analysis is evaluated in three US counties using representative crops: rice in Glenn County (California), corn in Hamilton County (Iowa), and peanuts in Jackson County (Florida). We evaluate the biochar selling price considering crop yield increases of 0.6%, 2.9%, and 10% after biochar application over 20 years in Glenn County, Hamilton County, and Jackson County, respectively. The biochar prices are calculated under low and high commodity prices to determine upper and lower bounds. Jackson County has the most economically beneficial scenario with an average minimum fuel selling price (MFSP) of $1.55 gal−1 of biofuel produced whereas Hamilton County has the highest average MFSP of $3.82 gal−1. The life‐cycle analysis shows that woody biomass has a strong potential to produce carbon‐negative energy compared to grass and straw. Of the 304 cases scenarios considered for this platform, 64% could produce biofuel with negative GHG emissions, which would meet the Renewable Fuel Standard (RFS) target for cellulosic biofuels.