ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lai, Zhi-Fa"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterization of protein arginine methyltransferase of TgPRMT5 in Toxoplasma gondii
    (Springer Nature, 2019-05-08) Liu, Min; Li, Fen-Xiang; Li, Chun-Yuan; Li, Xiao-Cong; Chen, Long-Fei; Wu, Kun; Yang, Pei-Liang; Lai, Zhi-Fa; Liu, Ting-kai; Sullivan, William J., Jr.; Cui, Liwang; Chen, Xiao-Guang; Pharmacology and Toxicology, School of Medicine
    BACKGROUND: Protein arginine methylation is a prevalent post-translational modification. The protein arginine methyltransferase family (PRMT) is involved in many cellular processes in eukaryotes, including transcriptional regulation, epigenetic regulation, RNA metabolism, and DNA damage repair. Toxoplasma gondii, an opportunistic protozoan parasite, encodes five conserved PRMTs. PRMT5 is thought to be responsible for substantial PRMT activity in T. gondii; however, it has not yet been characterized. METHODS: We tagged the 3' end of the endogenous TgPRMT5 genomic locus with sequence encoding a 3X hemagglutinin (HA) epitope. IFA and WB were performed to check the expression and subcellular localization of TgPRMT5 in tachyzoites and bradyzoites. In vitro methylation assays were performed to determine whether endogenous TgPRMT5 has arginine methyltransferase activity. RESULTS: IFA and WB results showed that T. gondii PRMT5 (TgPRMT5) was localized in the cytoplasm in the tachyzoite stage; however, it shifts largely to the nuclear compartment in the bradyzoite stage. The in vitro methylation showed that TgPRMT5 has authentic type II PRMT activity and forms monomethylarginines and symmetric dimethylarginines. CONCLUSIONS: We determined the expression and cellular localization of TgPRMT5 in tachyzoites and bradyzoites and confirmed its type II PRMT activity. We demonstrated the major changes in expression and cellular localization of TgPRMT5 during the tachyzoite and bradyzoite stages in T. gondii. Our findings suggest that TgPRMT5 protein may be involved in tachyzoite-bradyzoite transformation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University