- Browse by Author
Browsing by Author "Lahr, Thomas F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Characterization of the ion transport responses to ADH in the MDCK-C7 cell line(2000-03) Lahr, Thomas F.; Record, Rae D.; Hoover, Diane K.; Hughes, Cynthia L.; Blazer-Yost, BonnieThe Madin-Darby canine kidney (MDCK) cell line expresses many characteristics of the renal collecting duct. The MDCK-C7 subclone forms a high-resistance, hormone-responsive model of the principal cells, which are found in distal sections of the renal tubule. The electrophysiological technique of short-circuit current measurement was used to examine the response to antidiuretic hormone (ADH) in the MDCK-C7 clone. Three discrete electrogenic ion transport phenomena can be distinguished temporally and by the use of inhibitors and effectors. Initially the cells exhibit anion secretion through the cystic fibrosis transmembrane conductance regulator (CFTR). The presence of CFTR was confirmed by immunoprecipitation followed by Western blotting. The CFTR-mediated anion secretion is transient and is followed, in time, by a verapamil- and Ba(+)-sensitive anion secretion or cation absorption and, finally, by Na+ reabsorption via epithelial Na+ channels (ENaC). In contrast to other studies of MDCK cells, we see no indication that the presence of CFTR functionally inhibits ENaC. The characterization of the various ion transport phenomena substantiates this cell line as a model renal epithelium that can be used to study the hormonal and metabolic regulation of ion transport.Item Effect of the mycotoxin, ochratoxin A, on hormone-stimulated ion transport in a cultured cell model of the renal principal cell(2005-04) Blazer-Yost, Bonnie; West, T. Aaron; Stack, Jamie; Peck, Kerrie; Lahr, Thomas F.; Gekle, MichaelThe mycotoxin ochratoxin A (OTA) is a common contaminant of many foodstuffs and, consequently, is present in a large proportion of tested populations of humans and commercial animals. The predominant effects of OTA are manifested in the kidney where the severity varies from salt wasting to renal carcinoma formation in a concentration-dependent fashion. The MDCK-C7 renal cell culture model responds to various hormones known to regulate electrolyte and fluid balance and was used as a model to study the chronic effects of an acute exposure to low dose OTA. The natriferic hormones aldosterone and insulin-like growth factor 1 (IGF1) both stimulate Na(+) flux in a reabsorptive direction via activation of the epithelial Na(+) channel (ENaC). In contrast, anti-diuretic hormone (ADH) stimulates three separate and temporally distinct ion transport responses, one of which is Na(+) reabsorption. Treatment of MDCK-C7 cells with OTA (100 nM) for 48 h selectively and irreversibly inhibits hormone-stimulated Na(+) reabsorption via ENaC. This effect was retained for 48 cell passages after the removal of the toxin and mimics the OTA-induced salt-wasting that has been documented in clinical studies. These studies indicate that the effect of the toxin is genomic and therefore, likely to be long lasting in exposed animals and humans.