- Browse by Author
Browsing by Author "Lagatuz, Mark"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Retinal vessel changes in pulmonary arterial hypertension(Wiley, 2022-02-15) DuPont, Mariana; Lambert, Savanna; Rodriguez‐Martin, Antonio; Hernandez, Okaeri; Lagatuz, Mark; Yilmaz, Taygan; Foderaro, Andrew; Baird, Grayson L.; Parsons‐Wingerter, Patricia; Lahm, Tim; Grant, Maria B.; Ventetuolo, Corey E.; Medicine, School of MedicinePulmonary arterial hypertension (PAH) is classically considered an isolated small vessel vasculopathy of the lungs with peripheral pulmonary vascular obliteration. Systemic manifestations of PAH are increasingly acknowledged, but data remain limited. We hypothesized that retinal vascular changes occur in PAH. PAH subjects underwent retinal fluorescein angiography (FA) and routine disease severity measures were collected from the medical record. FA studies were analyzed using VESsel GENerational Analysis (VESGEN), a noninvasive, user-interactive computer software that assigns branching generation to large and small vessels. FAs from controls (n = 8) and PAH subjects (n = 9) were compared. The tortuosity of retinal arteries was higher in PAH subjects compared to unmatched controls (1.17, 95% confidence interval: [1.14, 1.20] in PAH vs. 1.13, 95% CI: [1.12, 1.14] in controls, p = 0.01). Venous tortuosity was higher and more variable in PAH (1.17, 95% CI: [1.14, 1.20]) compared to controls (1.13, 95% CI: [1.12, 1.15]), p = 0.02. PAH subjects without connective tissue disease had the highest degree of retinal tortuosity relative to controls (arterial, p = 0.01; venous, p = 0.03). Younger PAH subjects had greater retinal arterial tortuosity, which attenuated with age and was not observed in controls. Retinal vascular parameters correlated with some clinical measures of disease in PAH subjects. In conclusion, PAH subjects exhibit higher retinal vascular tortuosity. Retinal vascular changes may track with pulmonary vascular disease progression. Use of FA and VESGEN may facilitate early, noninvasive detection of PAH.Item Vascular Patterning as Integrative Readout of Complex Molecular and Physiological Signaling by VESsel GENeration Analysis(Karger, 2021) Lagatuz, Mark; Vyas, Ruchi J.; Predovic, Marina; Lim, Shiyin; Jacobs, Nicole; Martinho, Miguel; Valizadegan, Hamed; Kao, David; Oza, Nikunj; Theriot, Corey A.; Zanello, Susana B.; Taibbi, Giovanni; Vizzeri, Gianmarco; Dupont, Mariana; Grant, Maria B.; Lindner, Daniel J.; Reinecker, Hans-Christian; Pinhas, Alexander; Chui, Toco Y.; Rosen, Richard B.; Moldovan, Nicanor; Vickerman, Mary B.; Radhakrishnan, Krishnan; Parsons-Wingerter, Patricia; Ophthalmology, School of MedicineThe molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA’s globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites. Upon input of a binary vascular image, automated output includes informative vascular maps and quantification of parameters such as tortuosity, fractal dimension, vessel diameter, area, length, number, and branch point. Previous research has demonstrated that cytokines and therapeutics such as vascular endothelial growth factor, basic fibroblast growth factor (fibroblast growth factor-2), transforming growth factor-beta-1, and steroid triamcinolone acetonide specify unique “fingerprint” or “biomarker” vascular patterns that integrate dominant signaling with physiological response. In vivo experimental examples described here include vascular response to keratinocyte growth factor, a novel vessel tortuosity factor; angiogenic inhibition in humanized tumor xenografts by the anti-angiogenesis drug leronlimab; intestinal vascular inflammation with probiotic protection by Saccharomyces boulardii, and a workflow programming of vascular architecture for 3D bioprinting of regenerative tissues from 2D images. Microvascular remodeling in the human retina is described for astronaut risks in microgravity, vessel tortuosity in diabetic retinopathy, and venous occlusive disease.