- Browse by Author
Browsing by Author "Kyritsi, Konstantina"
Now showing 1 - 10 of 23
Results Per Page
Sort Options
Item Amelioration of Large Bile Duct Damage by Histamine-2 Receptor Vivo-Morpholino Treatment(Elsevier, 2020-05) Kennedy, Lindsey; Meadows, Vik; Kyritsi, Konstantina; Pham, Linh; Kundu, Debjyoti; Kulkarni, Rewa; Cerritos, Karla; Demieville, Jennifer; Hargrove, Laura; Glaser, Shannon; Zhou, Tianhao; Jaeger, Victoria; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicineHistamine binds to one of the four G-protein-coupled receptors expressed by large cholangiocytes and increases large cholangiocyte proliferation via histamine-2 receptor (H2HR), which is increased in patients with primary sclerosing cholangitis (PSC). Ranitidine decreases liver damage in Mdr2-/- (ATP binding cassette subfamily B member 4 null) mice. We targeted hepatic H2HR in Mdr2-/- mice using vivo-morpholino. Wild-type and Mdr2-/- mice were treated with mismatch or H2HR vivo-morpholino by tail vein injection for 1 week. Liver damage, mast cell (MC) activation, biliary H2HR, and histamine serum levels were studied. MC markers were determined by quantitative real-time PCR for chymase and c-kit. Intrahepatic biliary mass was detected by cytokeratin-19 and F4/80 to evaluate inflammation. Biliary senescence was determined by immunofluorescence and senescence-associated β-galactosidase staining. Hepatic fibrosis was evaluated by staining for desmin, Sirius Red/Fast Green, and vimentin. Immunofluorescence for transforming growth factor-β1, vascular endothelial growth factor-A/C, and cAMP/ERK expression was performed. Transforming growth factor-β1 and vascular endothelial growth factor-A secretion was measured in serum and/or cholangiocyte supernatant. Treatment with H2HR vivo-morpholino in Mdr2-/--mice decreased hepatic damage; H2HR protein expression and MC presence or activation; large intrahepatic bile duct mass, inflammation and senescence; and fibrosis, angiogenesis, and cAMP/phospho-ERK expression. Inhibition of H2HR signaling ameliorates large ductal PSC-induced damage. The H2HR axis may be targeted in treating PSC.Item Biliary damage and liver fibrosis are ameliorated in a novel mouse model lacking l-histidine decarboxylase/histamine signaling(Nature Publishing Group, 2020-02-13) Kennedy, Lindsey; Meadows, Vik; Demieville, Jennifer; Hargrove, Laura; Virani, Shohaib; Glaser, Shannon; Zhou, Tianhao; Rinehart, Evan; Jaeger, Victoria; Kyritsi, Konstantina; Pham, Linh; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicinePrimary sclerosing cholangitis (PSC) is characterized by biliary damage and fibrosis. Multidrug resistance-2 gene knockout (Mdr2−/−) mice and PSC patients have increased histamine (HA) levels (synthesized by l-histidine decarboxylase, HDC) and HA receptor (HR) expression. Cholestatic HDC−/− mice display ameliorated biliary damage and hepatic fibrosis. The current study evaluated the effects of knockout of HDC−/− in Mdr2−/− mice (DKO) on biliary damage and hepatic fibrosis. WT, Mdr2−/− mice and homozygous DKO mice were used. Selected DKO mice were treated with HA. We evaluated liver damage along with HDC expression and HA serum levels. Changes in ductular reaction were evaluated along with liver fibrosis, inflammation and bile acid signaling pathways. The expression of H1HR/PKC-α/TGF-β1 and H2HR/pERK/VEGF-C was determined. In vitro, cholangiocyte lines were treated with HA with/without H1/H2 inhibitors before measuring: H1/H2HR, TGF-β1 and VEGF-C expression. Knockout of HDC ameliorates hepatic damage, ductular reaction, fibrosis, inflammation, bile acid signaling and H1HR/PKC-α/TGF-β1 and H2HR/pERK/VEGF-C signaling. Reactivation of the HDC/HA axis increased these parameters. In vitro, stimulation with HA increased HR expression and PKC-α, TGF-β1 and VEGF-C expression, which was reduced with HR inhibitors. Our data demonstrate the key role for the HDC/HA axis in the management of PSC progression.Item Downregulation of hepatic stem cell factor by Vivo-Morpholino treatment inhibits mast cell migration and decreases biliary damage/senescence and liver fibrosis in Mdr2−/− mice(Elsevier, 2019-12-01) Meadows, Vik; Kennedy, Lindsey; Hargrove, Laura; Demieville, Jennifer; Meng, Fanyin; Virani, Shohaib; Reinhart, Evan; Kyritsi, Konstantina; Invernizzi, Pietro; Yang, Zhihong; Wu, Nan; Liangpunsakul, Suthat; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicinePrimary sclerosing cholangitis (PSC) is characterized by increased mast cell (MC) infiltration, biliary damage and hepatic fibrosis. Cholangiocytes secrete stem cell factor (SCF), which is a chemoattractant for c-kit expressed on MCs. We aimed to determine if blocking SCF inhibits MC migration, biliary damage and hepatic fibrosis. Methods: FVB/NJ and Mdr2-/- mice were treated with Mismatch or SCF Vivo-Morpholinos. We measured (i) SCF expression and secretion; (ii) hepatic damage; (iii) MC migration/activation and histamine signaling; (iv) ductular reaction and biliary senescence; and (v) hepatic fibrosis. In human PSC patients, SCF expression and secretion were measured. In vitro, cholangiocytes were evaluated for SCF expression and secretion. Biliary proliferation/senescence was measured in cholangiocytes pretreated with 0.1% BSA or the SCF inhibitor, ISK03. Cultured HSCs were stimulated with cholangiocyte supernatant and activation measured. MC migration was determined with cholangiocytes pretreated with BSA or ISK03 loaded into the bottom of Boyden chambers and MCs into top chamber. Results: Biliary SCF expression and SCF serum levels increase in human PSC. Cholangiocytes, but not hepatocytes, from SCF Mismatch Mdr2-/- mice have increased SCF expression and secretion. Inhibition of SCF in Mdr2-/- mice reduced (i) hepatic damage; (ii) MC migration; (iii) histamine and SCF serum levels; and (iv) ductular reaction/biliary senescence/hepatic fibrosis. In vitro, cholangiocytes express and secrete SCF. Blocking biliary SCF decreased MC migration, biliary proliferation/senescence, and HSC activation. Conclusion: Cholangiocytes secrete increased levels of SCF inducing MC migration, contributing to biliary damage/hepatic fibrosis. Targeting MC infiltration may be an option to ameliorate PSC progression.Item Downregulation of hepatic stem cell factor by Vivo-Morpholino treatment inhibits mast cell migration and decreases biliary damage/senescence and liver fibrosis in Mdr2−/− mice(Elsevier, 2019) Meadows, Vik; Kennedy, Lindsey; Hargrove, Laura; Demieville, Jennifer; Meng, Fanyin; Virani, Shohaib; Reinhart, Evan; Kyritsi, Konstantina; Invernizzi, Pietro; Yang, Zhihong; Wu, Nan; Liangpunsakul, Suthat; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicineIntroduction Primary sclerosing cholangitis (PSC) is characterized by increased mast cell (MC) infiltration, biliary damage and hepatic fibrosis. Cholangiocytes secrete stem cell factor (SCF), which is a chemoattractant for c-kit expressed on MCs. We aimed to determine if blocking SCF inhibits MC migration, biliary damage and hepatic fibrosis. Methods FVB/NJ and Mdr2−/− mice were treated with Mismatch or SCF Vivo-Morpholinos. We measured (i) SCF expression and secretion; (ii) hepatic damage; (iii) MC migration/activation and histamine signaling; (iv) ductular reaction and biliary senescence; and (v) hepatic fibrosis. In human PSC patients, SCF expression and secretion were measured. In vitro, cholangiocytes were evaluated for SCF expression and secretion. Biliary proliferation/senescence was measured in cholangiocytes pretreated with 0.1% BSA or the SCF inhibitor, ISK03. Cultured HSCs were stimulated with cholangiocyte supernatant and activation measured. MC migration was determined with cholangiocytes pretreated with BSA or ISK03 loaded into the bottom of Boyden chambers and MCs into top chamber. Results Biliary SCF expression and SCF serum levels increase in human PSC. Cholangiocytes, but not hepatocytes, from SCF Mismatch Mdr2−/− mice have increased SCF expression and secretion. Inhibition of SCF in Mdr2−/− mice reduced (i) hepatic damage; (ii) MC migration; (iii) histamine and SCF serum levels; and (iv) ductular reaction/biliary senescence/hepatic fibrosis. In vitro, cholangiocytes express and secrete SCF. Blocking biliary SCF decreased MC migration, biliary proliferation/senescence, and HSC activation. Conclusion Cholangiocytes secrete increased levels of SCF inducing MC migration, contributing to biliary damage/hepatic fibrosis. Targeting MC infiltration may be an option to ameliorate PSC progression.Item Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 / Mouse Model of Primary Sclerosing Cholangitis(Cognizant Communication Corporation, 2020-11) Kyritsi, Konstantina; Francis, Heather; Zhou, Tianhao; Ceci, Ludovica; Wu, Nan; Yang, Zhihong; Meng, Fanyin; Chen, Lixian; Baiocchi, Leonardo; Kundu, Debjyoti; Kennedy, Lindsey; Liangpunsakul, Suthat; Wu, Chaodong; Glaser, Shannon; Alpini, Gianfranco; Medicine, School of MedicineBiliary senescence and hepatic fibrosis are hallmarks of cholangiopathies including primary sclerosing cholangitis (PSC). Senescent cholangiocytes display senescence-associated secretory phenotypes [SASPs, e.g., transforming growth factor-1 (TGF-1)] that further increase biliary senescence (by an autocrine loop) and trigger liver fibrosis by paracrine mechanisms. The aim of this study was to determine the effect of p16 inhibition and role of the TGF-1/microRNA (miR)-34a/sirtuin 1 (SIRT1) axis in biliary damage and liver fibrosis in the Mdr2/ mouse model of PSC. We treated (i) in vivo male wild-type (WT) and Mdr2/ mice with p16 Vivo-Morpholino or controls before measuring biliary mass [intrahepatic bile duct mass (IBDM)] and senescence, biliary SASP levels, and liver fibrosis, and (ii) in vitro intrahepatic murine cholangiocyte lines (IMCLs) with small interfering RNA against p16 before measuring the mRNA expression of proliferation, senescence, and fibrosis markers. p16 and miR-34a increased but SIRT1 decreased in Mdr2/ mice and PSC human liver samples compared to controls. p16 immunoreactivity and biliary senescence and SASP levels increased in Mdr2/ mice but decreased in Mdr2/ mice treated with p16 Vivo-Morpholino. The increase in IBDM and hepatic fibrosis (observed in Mdr2/ mice) returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. TGF-1 immunoreactivity and biliary SASPs levels were higher in Mdr2/ compared to those of WT mice but returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. The expression of fibrosis/senescence markers decreased in cholangiocytes from Mdr2/ mice treated with p16 Vivo-Morpholino (compared to Mdr2/ mice) and in IMCLs (after p16 silencing) compared to controls. Modulation of the TGF-1/miR-34a/SIRT1 axis may be important in the management of PSC phenotypes.Item The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling(MDPI, 2022-05-09) Mancinelli, Romina; Ceci, Ludovica; Kennedy, Lindsey; Francis, Heather; Meadows, Vik; Chen, Lixian; Carpino, Guido; Kyritsi, Konstantina; Wu, Nan; Zhou, Tianhao; Sato, Keisaku; Pannarale, Luigi; Glaser, Shannon; Chakraborty, Sanjukta; Alpini, Gianfranco; Gaudio, Eugenio; Onori, Paolo; Franchitto, Antonio; Medicine, School of MedicineBackground & aims: Cholangiocytes are the target cells of liver diseases that are characterized by biliary senescence (evidenced by enhanced levels of senescence-associated secretory phenotype, SASP, e.g., TGF-β1), and liver inflammation and fibrosis accompanied by altered bile acid (BA) homeostasis. Taurocholic acid (TC) stimulates biliary hyperplasia by activation of 3',5'-cyclic cyclic adenosine monophosphate (cAMP) signaling, thereby preventing biliary damage (caused by cholinergic/adrenergic denervation) through enhanced liver angiogenesis. Also: (i) α-calcitonin gene-related peptide (α-CGRP, which activates the calcitonin receptor-like receptor, CRLR), stimulates biliary proliferation/senescence and liver fibrosis by enhanced biliary secretion of SASPs; and (ii) knock-out of α-CGRP reduces these phenotypes by decreased cAMP levels in cholestatic models. We aimed to demonstrate that TC effects on liver phenotypes are dependent on changes in the α-CGRP/CALCRL/cAMP/PKA/ERK1/2/TGF-β1/VEGF axis. Methods: Wild-type and α-CGRP-/- mice were fed with a control (BAC) or TC diet for 1 or 2 wk. We measured: (i) CGRP levels by both ELISA kits in serum and by qPCR in isolated cholangiocytes (CALCA gene for α-CGRP); (ii) CALCRL immunoreactivity by immunohistochemistry (IHC) in liver sections; (iii) liver histology, intrahepatic biliary mass, biliary senescence (by β-GAL staining and double immunofluorescence (IF) for p16/CK19), and liver fibrosis (by Red Sirius staining and double IF for collagen/CK19 in liver sections), as well as by qPCR for senescence markers in isolated cholangiocytes; and (iv) phosphorylation of PKA/ERK1/2, immunoreactivity of TGF-β1/TGF- βRI and angiogenic factors by IHC/immunofluorescence in liver sections and qPCR in isolated cholangiocytes. We measured changes in BA composition in total liver by liquid chromatography/mass spectrometry. Results: TC feeding increased CALCA expression, biliary damage, and liver inflammation and fibrosis, as well as phenotypes that were associated with enhanced immunoreactivity of the PKA/ERK1/2/TGF-β1/TGF-βRI/VEGF axis compared to BAC-fed mice and phenotypes that were reversed in α-CGRP-/- mice fed TC coupled with changes in hepatic BA composition. Conclusion: Modulation of the TC/ α-CGRP/CALCRL/PKA/ERK1/2/TGF-β1/VEGF axis may be important in the management of cholangiopathies characterized by BA accumulation.Item FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2-/- Mouse Model of Primary Sclerosing Cholangitis(Wolters Kluwer, 2022) O’Brien, April; Zhou, Tianhao; White, Tori; Medford, Abigail; Chen, Lixian; Kyritsi, Konstantina; Wu, Nan; Childs, Jonathan; Stiles, Danaleigh; Ceci, Ludovica; Chakraborty, Sanjukta; Ekser, Burcin; Baiocchi, Leonardo; Carpino, Guido; Gaudio, Eugenio; Wu, Chaodong; Kennedy, Lindsey; Francis, Heather; Alpini, Gianfranco; Glaser, Shannon; Medicine, School of MedicineFibroblast growth factor 1 (FGF1) belongs to a family of growth factors involved in cellular growth and division. MicroRNA 16 (miR-16) is a regulator of gene expression, which is dysregulated during liver injury and insult. However, the role of FGF1 in the progression of biliary proliferation, senescence, fibrosis, inflammation, angiogenesis, and its potential interaction with miR-16, are unknown. In vivo studies were performed in male bile duct-ligated (BDL, 12-week-old) mice, multidrug resistance 2 knockout (Mdr2-/-) mice (10-week-old), and their corresponding controls, treated with recombinant human FGF1 (rhFGF1), fibroblast growth factor receptor (FGFR) antagonist (AZD4547), or anti-FGF1 monoclonal antibody (mAb). In vitro, the human cholangiocyte cell line (H69) and human hepatic stellate cells (HSCs) were used to determine the expression of proliferation, fibrosis, angiogenesis, and inflammatory genes following rhFGF1 treatment. PSC patient and control livers were used to evaluate FGF1 and miR-16 expression. Intrahepatic bile duct mass (IBDM), along with hepatic fibrosis and inflammation, increased in BDL mice treated with rhFGF1, with a corresponding decrease in miR-16, while treatment with AZD4547 or anti-FGF1 mAb decreased hepatic fibrosis, IBDM, and inflammation in BDL and Mdr2-/- mice. In vitro, H69 and HSCs treated with rhFGF1 had increased expression of proliferation, fibrosis, and inflammatory markers. PSC samples also showed increased FGF1 and FGFRs with corresponding decreases in miR-16 compared with healthy controls. Conclusion: Our study demonstrates that suppression of FGF1 and miR-16 signaling decreases the presence of hepatic fibrosis, biliary proliferation, inflammation, senescence, and angiogenesis. Targeting the FGF1 and miR-16 axis may provide therapeutic options in treating cholangiopathies such as PSC.Item Functional Role of the Secretin/Secretin Receptor Signaling During Cholestatic Liver Injury(AASLD, 2020-12) Wu, Nan; Baiocchi, Leonardo; Zhou, Tianhao; Kennedy, Lindsey; Ceci, Ludovica; Meng, Fanyin; Sato, Keisaku; Wu, Chaodong; Ekser, Burcin; Kyritsi, Konstantina; Kundu, Debjyoti; Chen, Lixian; Meadows, Vik; Franchitto, Antonio; Alvaro, Domenico; Onori, Paolo; Gaudio, Eugenio; Lenci, Ilaria; Francis, Heather; Glaser, Shannon; Alpini, Gianfranco; Medicine, School of MedicineLiver diseases are a major health concern and affect a large proportion of people worldwide. There are over 100 types of liver disorders, including cirrhosis, cholangiocarcinoma (CCA), hepatocellular carcinoma, and hepatitis. Despite the relevant number of people who are affected by liver diseases, and the increased awareness with regard to these disorders, the number of deaths corresponding to liver injury is expected to increase in the foreseeable future. One of the possible reasons for this is that a complete comprehension of the mechanisms of hepatic damage involving specific liver anatomical districts is lacking, and, as a consequence, current treatments available are suboptimal. A major burden in the clinical setting are chronic cholestatic liver diseases (e.g., primary biliary cholangitis [PBC], primary sclerosing cholangitis [PSC], biliary atresia), which target the biliary epithelium and are characterized by cholestasis.(1, 2) Because the secretin (Sct)/secretin receptor (SR) axis (expressed only by cholangiocytes in the liver)(3, 4) is the major regulator of ductal bile secretion,(5, 6) it is intuitive that this axis plays a key role in the maintenance of biliary homeostasis during the progression of cholangiopathies. For instance, PBC is characterized by reduced bicarbonate secretion, a phenomenon possibly impeding the formation of an HCO3 canalicular film (“bicarbonate umbrella”) on bile ducts, which has protective properties against highly concentrated bile acids (BAs).(1, 7, 8) In this review, we examined the molecular mechanisms by which the Sct/SR axis regulates biliary function and the homeostasis of the biliary epithelium in normal and pathophysiological conditions.Item Inhibition of Secretin/Secretin Receptor Axis Ameliorates NAFLD Phenotypes(Wiley, 2021-10) Chen, Lixian; Wu, Nan; Kennedy, Lindsey; Francis, Heather; Ceci, Ludovica; Zhou, Tianhao; Samala, Niharika; Kyritsi, Konstantina; Wu, Chaodong; Sybenga, Amelia; Ekser, Burcin; Dar, Wasim; Atkins, Constance; Meadows, Vik; Glaser, Shannon; Alpini, Gianfranco; Surgery, School of MedicineBackground & Aims Human non-alcoholic fatty liver disease (NAFLD) is characterized at early stages by hepatic steatosis, which may progress to nonalcoholic steatohepatitis (NASH) when the liver displays microvesicular steatosis, lobular inflammation, and pericellular fibrosis. The secretin (SCT)/secretin receptor (SCTR) axis promotes biliary senescence and liver fibrosis in cholestatic models through downregulation of miR-125b signaling. We aim to evaluate the effect of disrupting biliary SCT/SCTR/miR-125b signaling on hepatic steatosis, biliary senescence and liver fibrosis in NAFLD/NASH. Approach & Results In vivo, 4 wk male WT, Sct-/- and Sctr-/- mice were fed a control diet (CD) or high-fat diet (HFD) for 16 wks. The expression of SCT/SCTR/miR-125b axis was measured in human NAFLD/NASH liver samples and HFD mouse livers by immunohistochemistry (IHC) and qPCR. Biliary/hepatocyte senescence, ductular reaction and liver angiogenesis were evaluated in mouse liver and human NAFLD/NASH liver samples. miR-125b target lipogenesis genes in hepatocytes were screened and validated by custom RT2 Profiler PCR array and luciferase assay. Biliary SCT/SCTR expression was increased in human NAFLD/NASH samples and in livers of HFD mice, whereas the expression of miR-125b was decreased. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were observed in human NAFLD/NASH samples as well as HFD mice, which were decreased in Sct-/- and Sctr-/- HFD mice. Elovl1 is a lipogenesis gene targeted by miR-125b, and its expression was also decreased in HFD mouse hepatocytes following Sct or Sctr knockout. Bile acid profile in fecal samples have the greatest changes between WT mice and Sct-/-/Sctr-/- mice. Conclusion The biliary SCT/SCTR/miR-125b axis promotes liver steatosis by upregulating lipid biosynthesis gene Elovl1. Targeting the biliary SCT/SCTR/miR-125b axis may be key for ameliorating phenotypes of human NAFLD/NASH.Item Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2-/- mouse model of primary sclerosing cholangitis (PSC)(Elsevier, 2019-10) Zhou, Tianhao; Kyritsi, Konstantina; Wu, Nan; Francis, Heather; Yang, Zhihong; Chen, Lixian; O'Brien, April; Kennedy, Lindsey; Ceci, Ludovica; Meadows, Vik; Kusumanchi, Praveen; Wu, Chaodong; Baiocchi, Leonardo; Skill, Nicholas J.; Saxena, Romil; Sybenga, Amelia; Xie, Linglin; Liangpunsakul, Suthat; Meng, Fanyin; Alpini, Gianfranco; Glaser, Shannon; Medicine, School of MedicineBACKGROUND: Cholangiocytes are the target cells of cholangiopathies including primary sclerosing cholangitis (PSC). Vimentin is an intermediate filament protein that has been found in various types of mesenchymal cells. The aim of this study is to evaluate the role of vimentin in the progression of biliary damage/liver fibrosis and whether there is a mesenchymal phenotype of cholangiocytes in the Mdr2-/- model of PSC. METHODS: In vivo studies were performed in 12 wk. Mdr2-/- male mice with or without vimentin Vivo-Morpholino treatment and their corresponding control groups. Liver specimens from human PSC patients, human intrahepatic biliary epithelial cells (HIBEpiC) and human hepatic stellate cell lines (HHSteCs) were used to measure changes in epithelial-to-mesenchymal transition (EMT). FINDINGS: There was increased mesenchymal phenotype of cholangiocytes in Mdr2-/- mice, which was reduced by treatment of vimentin Vivo-Morpholino. Concomitant with reduced vimentin expression, there was decreased liver damage, ductular reaction, biliary senescence, liver fibrosis and TGF-β1 secretion in Mdr2-/- mice treated with vimentin Vivo-Morpholino. Human PSC patients and derived cell lines had increased expression of vimentin and other mesenchymal markers compared to healthy controls and HIBEpiC, respectively. In vitro silencing of vimentin in HIBEpiC suppressed TGF-β1-induced EMT and fibrotic reaction. HHSteCs had decreased fibrotic reaction and increased cellular senescence after stimulation with cholangiocyte supernatant with reduced vimentin levels. INTERPRETATION: Our study demonstrated that knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes, which leads to decreased biliary senescence and liver fibrosis. Inhibition of vimentin may be a key therapeutic target in the treatment of cholangiopathies including PSC. FUND: National Institutes of Health (NIH) awards, VA Merit awards.
- «
- 1 (current)
- 2
- 3
- »