- Browse by Author
Browsing by Author "Kutalik, Zoltán"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A cross-disorder dosage sensitivity map of the human genome(Elsevier, 2022) Collins, Ryan L.; Glessner, Joseph T.; Porcu, Eleonora; Lepamets, Maarja; Brandon, Rhonda; Lauricella, Christopher; Han, Lide; Morley, Theodore; Niestroj, Lisa-Marie; Ulirsch, Jacob; Everett, Selin; Howrigan, Daniel P.; Boone, Philip M.; Fu, Jack; Karczewski, Konrad J.; Kellaris, Georgios; Lowther, Chelsea; Lucente, Diane; Mohajeri, Kiana; Nõukas, Margit; Nuttle, Xander; Samocha, Kaitlin E.; Trinh, Mi; Ullah, Farid; Võsa, Urmo; Epi25 Consortium; Estonian Biobank Research Team; Hurles, Matthew E.; Aradhya, Swaroop; Davis, Erica E.; Finucane, Hilary; Gusella, James F.; Janze, Aura; Katsanis, Nicholas; Matyakhina, Ludmila; Neale, Benjamin M.; Sanders, David; Warren, Stephanie; Hodge, Jennelle C.; Lal, Dennis; Ruderfer, Douglas M.; Meck, Jeanne; Mägi, Reedik; Esko, Tõnu; Reymond, Alexandre; Kutalik, Zoltán; Hakonarson, Hakon; Sunyaev, Shamil; Brand, Harrison; Talkowski, Michael E.; Medical and Molecular Genetics, School of MedicineRare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.Item Disentangling the genetics of lean mass(Oxford University Press, 2019-02-01) Karasik, David; Zillikens, M. Carola; Hsu, Yi-Hsiang; Aghdassi, Ali; Akesson, Kristina; Amin, Najaf; Barroso, Inês; Bennett, David A.; Bertram, Lars; Bochud, Murielle; Borecki, Ingrid B.; Broer, Linda; Buchman, Aron S.; Byberg, Liisa; Campbell, Harry; Campos-Obando, Natalia; Cauley, Jane A.; Cawthon, Peggy M.; Chambers, John C.; Chen, Zhao; Cho, Nam H.; Choi, Hyung Jin; Chou, Wen-Chi; Cummings, Steven R.; De Groot, Lisette C. P. G. M.; De Jager, Phillip L.; Demuth, Ilja; Diatchenko, Luda; Econs, Michael J.; Eiriksdottir, Gudny; Enneman, Anke W.; Eriksson, Joel; Eriksson, Johan G.; Estrada, Karol; Evans, Daniel S.; Feitosa, Mary F.; Fu, Mao; Gieger, Christian; Grallert, Harald; Gudnason, Vilmundur; Lenore, Launer J.; Hayward, Caroline; Hofman, Albert; Homuth, Georg; Huffman, Kim M.; Husted, Lise B.; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Johnson, Toby; Biffar, Reiner; Jordan, Joanne M.; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O.; Klopp, Norman; Kloth, Jacqueline S. L.; Koller, Daniel L.; Kooner, Jaspal S.; Kraus, William E.; Kritchevsky, Stephen; Kutalik, Zoltán; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L.; Lerch, Markus M.; Lewis, Joshua R.; Lill, Christina; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Livshits, Gregory; Ljunggren, Östen; Loos, Ruth J. F.; Lorentzon, Mattias; Luan, Jian'an; Luben, Robert N.; Malkin, Ida; McGuigan, Fiona E.; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Michaëlsson, Karl; Mitchell, Braxton D.; Morris, Andrew P.; Mosekilde, Leif; Nethander, Maria; Newman, Anne B.; O'Connell, Jeffery R.; Oostra, Ben A.; Orwoll, Eric S.; Palotie, Aarno; Peacock, Munro; Perola, Markus; Peters, Annette; Prince, Richard L.; Psaty, Bruce M.; Räikkönen, Katri; Ralston, Stuart H.; Ripatti, Samuli; Rivadeneira, Fernando; Robbins, John A.; Rotter, Jerome I.; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schipf, Sabine; Shin, Chan Soo; Smith, Albert V.; Smith, Shad B.; Soranzo, Nicole; Spector, Timothy D.; Stančáková, Alena; Stefansson, Kari; Steinhagen-Thiessen, Elisabeth; Stolk, Lisette; Streeten, Elizabeth A.; Styrkarsdottir, Unnur; Swart, Karin M. A.; Thompson, Patricia; Thomson, Cynthia A.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J.; Uitterlinden, André G.; Van Duijn, Cornelia M.; Van Schoor, Natasja M.; Vandenput, Liesbeth; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Wareham, Nicholas J.; Waterworth, Dawn; Weedon, Michael N.; Wichmann, H-Erich.; Widen, Elisabeth; Williams, Frances M. K.; Wilson, James F.; Wright, Nicole C.; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Zhou, Yanhua; Nielson, Carrie M.; Harris, Tamara B.; Demissie, Serkalem; Kiel, Douglas P.; Ohlsson, Claes; Medicine, School of MedicineBackground: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age2, and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LM were termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.