- Browse by Author
Browsing by Author "Kusmierczyk, Andrew R"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Chaperonins keeping a lid on folding proteins(2001-09) Kusmierczyk, Andrew R; Martin, JörgTwo classes of chaperonins are known in all groups of organisms to participate in the folding of newly synthesized proteins. Whereas bacterial type I chaperonins use a reversibly binding cofactor to temporarily sequester folding substrate proteins within the cylindrical chaperonin cavity, type II chaperonins in archaea and the eukaryotic cytosol appear to have evolved a built-in lid for this purpose. Not entirely surprisingly, this has consequences for the folding modes of the two types of chaperonins.Item A Conserved 20S Proteasome Assembly Factor Requires a Cterminal HbYX Motif for Proteasomal Precursor Binding(2011-05) Kusmierczyk, Andrew R; Kunjappu, Mary J; Kim, Roger Y; Hochstrasser, MarkDedicated chaperones facilitate the assembly of the eukaryotic proteasome, but how they function remains largely unknown. Here we show that a yeast 20S proteasome assembly factor, Pba1–Pba2, requires a previously overlooked C-terminal hydrophobic-tyrosine-X (HbYX) motif for function. HbYX motifs in proteasome activators open the 20S proteasome entry pore, but Pba1–Pba2 instead binds inactive proteasomal precursors. We discovered an archaeal ortholog of this factor, here named PbaA, that also binds preferentially to proteasomal precursors in a HbYX motif–dependent fashion using the same proteasomal α-ring surface pockets as are bound by activators. PbaA and the related PbaB protein can be induced to bind mature 20S proteasomes if the active sites in the central chamber are occupied by inhibitors. Our data are consistent with an allosteric mechanism in which the maturation of the proteasome active sites determines the binding of assembly chaperones, potentially shielding assembly intermediates or misassembled complexes from nonproductive associations until assembly is complete.Item High salt-induced conversion of Escherichia coli GroEL into a fully functional thermophilic chaperonin(2000-08) Kusmierczyk, Andrew R; Martin, JörgThe GroE chaperonin system can adapt to and function at various environmental folding conditions. To examine chaperonin-assisted protein folding at high salt concentrations, we characterized Escherichia coli GroE chaperonin activity in 1.2 M ammonium sulfate. Our data are consistent with GroEL undergoing a conformational change at this salt concentration, characterized by elevated ATPase activity and increased exposure of hydrophobic surface, as indicated by increased binding of the fluorophore bis-(5,5′)-8-anilino-1-naphthalene sulfonic acid to the chaperonin. The presence of the salt results in increased substrate stringency and dependence on the full GroE system for release and productive folding of substrate proteins. Surprisingly, GroEL is fully functional as a thermophilic chaperonin in high concentrations of ammonium sulfate and is stable at temperatures up to 75 °C. At these extreme conditions, GroEL can suppress aggregation and mediate refolding of non-native proteins.Item Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn(2003-06) Kusmierczyk, Andrew R; Martin, JörgThe properties of the ATPase activity of the type II chaperonin from Methanococcus maripaludis (Mm-cpn) were examined. Mm-cpn can hydrolyze not only ATP, but also CTP, UTP, and GTP, albeit with different effectiveness. The ATPase activity is dependent on magnesium and potassium ions, and is effectively inhibited by sodium ions. Maximal rates of ATP hydrolysis are achieved at 600 mM potassium. Initial rates of ATP hydrolysis by Mm-cpn were determined at various ATP concentrations, revealing for the first time the presence of both positive intra-ring and negative inter-ring cooperativity in the archaeal chaperonin.Item Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis(2008-09) Kusmierczyk, Andrew R; Hochstrasser, MarkThe 26S proteasome is the key eukaryotic protease responsible for the degradation of intracellular proteins. Protein degradation by the 26S proteasome plays important roles in numerous cellular processes, including the cell cycle, differentiation, apoptosis, and the removal of damaged or misfolded proteins. How this 2.5-MDa complex, composed of at least 32 different polypeptides, is assembled in the first place is not well understood. However, it has become evident that this complicated task is facilitated by a framework of protein factors that chaperone the nascent proteasome through its various stages of assembly. We review here the known proteasome-specific assembly factors, most only recently discovered, and describe their potential roles in proteasome assembly, with an emphasis on the many remaining unanswered questions about this intricate process of assisted self-assembly.