- Browse by Author
Browsing by Author "Kumar, Ajay"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms(Association for Research in Vision and Ophthalmology, 2022) McDowell, Colleen M.; Kizhatil, Krishnakumar; Elliott, Michael H.; Overby, Darryl R.; van Batenburg-Sherwood, Joseph; Millar, J. Cameron; Kuehn, Markus H.; Zode, Gulab; Acott, Ted S.; Anderson, Michael G.; Bhattacharya, Sanjoy K.; Bertrand, Jacques A.; Borras, Terete; Bovenkamp, Diane E.; Cheng, Lin; Danias, John; De Ieso, Michael Lucio; Du, Yiqin; Faralli, Jennifer A.; Fuchshofer, Rudolf; Ganapathy, Preethi S.; Gong, Haiyan; Herberg, Samuel; Hernandez, Humberto; Humphries, Peter; John, Simon W.M.; Kaufman, Paul L.; Keller, Kate E.; Kelley, Mary J.; Kelly, Ruth A.; Krizaj, David; Kumar, Ajay; Leonard, Brian C.; Lieberman, Raquel L.; Liton, Paloma; Liu, Yutao; Liu, Katy C.; Lopez, Navita N.; Mao, Weiming; Mavlyutov, Timur; McDonnell, Fiona; McLellan, Gillian J.; Mzyk, Philip; Nartey, Andrews; Pasquale, Louis R.; Patel, Gaurang C.; Pattabiraman, Padmanabhan P.; Peters, Donna M.; Raghunathan, Vijaykrishna; Rao, Ponugoti Vasantha; Rayana, Naga; Raychaudhuri, Urmimala; Reina-Torres, Ester; Ren, Ruiyi; Rhee, Douglas; Chowdhury, Uttio Roy; Samples, John R.; Samples, E. Griffen; Sharif, Najam; Schuman, Joel S.; Sheffield, Val C.; Stevenson, Cooper H.; Soundararajan, Avinash; Subramanian, Preeti; Sugali, Chenna Kesavulu; Sun, Yang; Toris, Carol B.; Torrejon, Karen Y.; Vahabikashi, Amir; Vranka, Janice A.; Wang, Ting; Willoughby, Colin E.; Xin, Chen; Yun, Hongmin; Zhang, Hao F.; Fautsch, Michael P.; Tamm, Ernst R.; Clark, Abbot F.; Ethier, C. Ross; Stamer, W. Daniel; Ophthalmology, School of MedicineDue to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.Item Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms(ARVO, 2022-02) McDowell, Colleen M.; Kizhatil, Krishnakumar; Elliott, Michael H.; Overby, Darryl R.; Van Batenburg-Sherwood, Joseph; Millar, J. Cameron; Kuehn, Markus H.; Zode, Gulab; Acott, Ted S.; Anderson, Michael G.; Bhattacharya, Sanjoy K.; Bertrand, Jacques A.; Borras, Terete; Bovenkamp, Diane E.; Cheng, Lin; Danias, John; De Ieso, Michael Lucio; Du, Yiqin; Faralli, Jennifer A.; Fuchshofer, Rudolf; Ganapathy, Preethi S.; Gong, Haiyan; Herberg, Samuel; Hernandez, Humberto; Humphries, Peter; John, Simon W. M.; Kaufman, Paul L.; Keller, Kate E.; Kelley, Mary J.; Kelly, Ruth A.; Krizaj, David; Kumar, Ajay; Leonard, Brian C.; Lieberman, Raquel L.; Liton, Paloma; Liu, Yutao; Liu, Katy C.; Lopez, Navita N.; Mao, Weiming; Mavlyutov, Timur; McDonnell, Fiona; McLellan, Gillian J.; Mzyk, Philip; Nartey, Andrews; Pasquale, Louis R.; Patel, Gaurang C.; Pattabiraman, Padmanabhan P.; Peters, Donna M.; Raghunathan, Vijaykrishna; Rao, Ponugoti Vasantha; Rayana, Naga; Raychaudhuri, Urmimala; Reina-Torres, Ester; Ren, Ruiyi; Rhee, Douglas; Chowdhury, Uttio Roy; Samples, John R.; Samples, E. Griffen; Sharif, Najam; Schuman, Joel S.; Sheffield, Val C.; Stevenson, Cooper H.; Soundararajan, Avinash; Subramanian, Preeti; Sugali, Chenna Kesavulu; Sun, Yang; Toris, Carol B.; Torrejon, Karen Y.; Vahabikashi, Amir; Vranka, Janice A.; Wang, Ting; Willoughby, Colin E.; Xin, Chen; Yun, Hongmin; Zhang, Hao F.; Fautsch, Michael P.; Tamm, Ernst R.; Clark, Abbot F.; Ethier, C. Ross; Stamer, W. Daniel; Ophthalmology, School of MedicineDue to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.Item Two-Step Induction of Trabecular Meshwork Cells from Induced Pluripotent Stem Cells for Glaucoma(Elsevier, 2020-08-20) Kumar, Ajay; Cheng, Tianyu; Song, Weitao; Cheuk, Brandon; Yang, Enzhi; Yang, Lei; Xie, Yubing; Du, Yiqin; Pediatrics, School of MedicineGlaucoma is a leading cause of irreversible blindness worldwide. Reducing intraocular pressure is currently the only effective treatment. Elevated intraocular pressure is associated with increased resistance of the outflow pathway, mainly the trabecular meshwork (TM). Despite great progress in the field, the development of novel and effective treatment for glaucoma is still challenging. In this study, we reported that human induced pluripotent stem cells (iPSCs) can be cultured as colonies and monolayer cells expressing OCT4, alkaline phosphatase, SSEA4 and SSEA1. After induction to neural crest cells (NCCs) positive to NGFR and HNK1, the iPSCs can differentiate into TM cells. The induced iPSC-TM cells expressed TM cell marker CHI3L1, were responsive to dexamethasone treatment with increased expression of myocilin, ANGPTL7, and formed CLANs, comparable to primary TM cells. To the best of our knowledge, this is the first study that induces iPSCs to TM cells through a middle neural crest stage, which ensures a stable NCC pool and ensures the high output of the same TM cells. This system can be used to develop personalized treatments using patient-derived iPSCs, explore high throughput screening of new drugs focusing on TM response for controlling intraocular pressure, and investigate stem cell-based therapy for TM regeneration.