- Browse by Author
Browsing by Author "Krennrich, F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Multiwavelength Investigation of PSR J2229+6114 and its Pulsar Wind Nebula in the Radio, X-Ray, and Gamma-Ray Bands(IOP, 2024-01) Pope, I.; Mori, K.; Abdelmaguid, M.; Gelfand, J. D.; Reynolds, S. P.; Safi-Harb, S.; Hailey, C. J.; An, H.; (NuSTAR Collaboration); Bangale, P.; Batista, P.; Benbow, W.; Buckley, J. H.; Capasso, M.; Christiansen, J. L.; Chromey, A. J.; Falcone, A.; Feng, Q.; Finley, J. P.; Foote, G. M.; Gallagher, G.; Hanlon, W. F.; Hanna, D.; Hervet, O.; Holder, J.; Humensky, T. B.; Jin, W.; Kaaret, P.; Kertzman, M.; Kieda, D.; Kleiner, T. K.; Korzoun, N.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McGrath, C. E.; Mooney, C. L.; Moriarty, P.; Mukherjee, R.; O'Brien, S.; Ong, R. A.; Park, N.; Patel, S. R.; Pfrang, K.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Roache, E.; Sadeh, I.; Saha, L.; Sembroski, G. H.; Tak, D.; Tucci, J. V.; Weinstein, A.; Williams, D. A.; Woo, J.; (VERITAS Collaboration); Physics, School of ScienceG106.3+2.7, commonly considered to be a composite supernova remnant (SNR), is characterized by a boomerang-shaped pulsar wind nebula (PWN) and two distinct ("head" and "tail") regions in the radio band. A discovery of very-high-energy gamma-ray emission (Eγ > 100 GeV) followed by the recent detection of ultrahigh-energy gamma-ray emission (Eγ > 100 TeV) from the tail region suggests that G106.3+2.7 is a PeVatron candidate. We present a comprehensive multiwavelength study of the Boomerang PWN (100'' around PSR J2229+6114) using archival radio and Chandra data obtained two decades ago, a new NuSTAR X-ray observation from 2020, and upper limits on gamma-ray fluxes obtained by Fermi-LAT and VERITAS observatories. The NuSTAR observation allowed us to detect a 51.67 ms spin period from the pulsar PSR J2229+6114 and the PWN emission characterized by a power-law model with Γ = 1.52 ± 0.06 up to 20 keV. Contrary to the previous radio study by Kothes et al., we prefer a much lower PWN B-field (B ∼ 3 μG) and larger distance (d ∼ 8 kpc) based on (1) the nonvarying X-ray flux over the last two decades, (2) the energy-dependent X-ray size of the PWN resulting from synchrotron burn-off, and (3) the multiwavelength spectral energy distribution (SED) data. Our SED model suggests that the PWN is currently re-expanding after being compressed by the SNR reverse shock ∼1000 yr ago. In this case, the head region should be formed by GeV–TeV electrons injected earlier by the pulsar propagating into the low-density environment.Item Multiwavelength Observations of the Blazar VER J0521+211 during an Elevated TeV Gamma-Ray State(IOP, 2022-06-27) Adams, C. B.; Batista, P.; Benbow, W.; Brill, A.; Brose , R.; Buckley, J. H.; Capasso, M.; Christiansen, J. L.; Errando, M.; Feng, Q.; Finley, J. P.; Foote, G. M.; Fortson, L.; Furniss, A.; Gallagher, G.; Gent, A.; Giuri, C.; Hanlon, W. F.; Hanna, D.; Hassan, T.; Hervet, O.; Holder, J.; Hona, B.; Hughes, G.; Humensky, T. B.; Jin, W.; Kaaret, P.; Kertzman, M.; Kieda, D.; Kleiner, T. K.; Krennrich, F.; Kumar, S.; Lang, M. J.; Lundy, M.; Maier, G.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nievas-Rosillo, M.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Patel, S.; Patel, S. R.; Pfrang, K.; Pohl, M.; Prado, R. R.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Ribeiro, D.; Roache, E.; Ryan, J. L.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shang, R.; Stevenson, B.; Tucci, J. V.; Vassiliev, V. V.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Williams, D. A.; Williamson, T. J.; (The VERITAS Collaboration); Acciari, V. A.; Aniello, T.; Ansoldi, S.; Antonelli, L. A.; Arbet Engels, A.; Arcaro, C.; Artero, M.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; Barres de Almeida, U.; Barrio, J. A.; Batković, I.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Bernardos, M.; Berti, A.; Besenrieder, J.; Bhattacharyya, W.; Bigongiari, C.; Biland, A.; Blanch, O.; Bökenkamp, H.; Bonnoli, G.; Bošnjak, Ž.; Burelli, I.; Busetto, G.; Carosi, R.; Ceribella, G.; Cerruti, M.; Chai, Y.; Chilingarian, A.; Cikota, S.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; D'Amico, G.; D'Elia, V.; Da Vela, P.; Dazzi, F.; De Angelis , A.; De Lotto, B.; Del Popolo, A.; Delfino, M.; Delgado, J.; Delgado Mendez, C.; Depaoli, D.; Di Pierro, F.; Di Venere, L.; Do Souto Espiñeira, E.; Dominis Prester, D.; Donini, A.; Dorner, D.; Doro, M.; Elsaesser, D.; Fallah Ramazani, V.; Fariña, L.; Fattorini, A.; Font, L.; Fruck, C.; Fukami, S.; Fukazawa, Y.; García López, R. J.; Garczarczyk, M.; Gasparyan, S.; Gaug, M.; Giglietto, N.; Giordano, F.; Gliwny, P.; Godinović, N.; Green, J. G.; Green, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Heckmann, L.; Herrera, J.; Hrupec, D.; Hütten, M.; Inada, T.; Iotov, R.; Ishio, K.; Iwamura, Y.; Jiménez Martínez, I.; Jormanainen, J.; Jouvin, L.; Kerszberg, D.; Kobayashi, Y.; Kubo, H.; Kushida, J.; Lamastra, A.; Lelas, D.; Leone, F.; Lindfors, E.; Linhoff, L.; Lombardi, S.; Longo, F.; López-Coto, R.; López-Moya, M.; López-Oramas, A.; Loporchio, S.; Lorini, A.; Machado de Oliveira Fraga, B.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Mariotti, M.; Martínez, M.; Mas Aguilar, A.; Mazin, D.; Menchiari, S.; Mender, S.; Mićanović, S.; Miceli, D.; Miener, T.; Miranda, J. M.; Mirzoyan, R.; Molina, E.; Mondal, H. A.; Moralejo, A.; Morcuenda, D.; Moreno, V.; Nakamori, T.; Nanci, C.; Nava, L.; Neustroev, V.; Nievas Rosillo, M.; Nigro, C.; Nilsson, K.; Nishijima, K.; Noda, K.; Nozaki, S.; Ohtani, Y.; Oka, T.; Otero-Santos, J.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredas, J. M.; Pavletić, L.; Peñil, P.; Persic, M.; Pihet, M.; Prada Moroni, P. G.; Prandini, E.; Priyadarshi, C.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Rugliancich, A.; Sahakyan, N.; Saito, T.; Sakurai, S.; Satalecka , K.; Saturni, F. G.; Schleicher, B.; Schmidt, K.; Schmuckermaier, F.; Schubert, J. L.; Schweizer , T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Spolon, A.; Stamerra, A.; Strišković, J.; Strom, D.; Strzys, M.; Suda, Y.; Surić, T.; Takahashi, M.; Takeishi, R.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Teshima, M.; Tosti, L.; Truzzi, S.; Tutone, A.; Ubach, S.; van Scherpenberg, J.; Vanzo, G.; Vazquez Acosta, M.; Ventura, S.; Verguilov, V.; Viale, I.; Vigorito, C. F.; Vitale, V.; Vovk, I.; Will, M.; Wunderlich, C.; Yamamoto, T.; Zarić, D.; (The MAGIC Collaboration),; Physics, School of ScienceWe report on a long-lasting, elevated gamma-ray flux state from VER J0521+211 observed by VERITAS, MAGIC, and Fermi-LAT in 2013 and 2014. The peak integral flux above 200 GeV measured with the nightly binned light curve is (8.8 ± 0.4) × 10−7 photons m−2 s−1, or ∼37% of the Crab Nebula flux. Multiwavelength observations from X-ray, UV, and optical instruments are also presented. A moderate correlation between the X-ray and TeV gamma-ray fluxes was observed, and the X-ray spectrum appeared harder when the flux was higher. Using the gamma-ray spectrum and four models of the extragalactic background light (EBL), a conservative 95% confidence upper limit on the redshift of the source was found to be z ≤ 0.31. Unlike the gamma-ray and X-ray bands, the optical flux did not increase significantly during the studied period compared to the archival low-state flux. The spectral variability from optical to X-ray bands suggests that the synchrotron peak of the spectral energy distribution (SED) may become broader during flaring states, which can be adequately described with a one-zone synchrotron self-Compton model varying the high-energy end of the underlying particle spectrum. The synchrotron peak frequency of the SED and the radio morphology of the jet from the MOJAVE program are consistent with the source being an intermediate-frequency-peaked BL Lac object.