- Browse by Author
Browsing by Author "Kovalenko, Ilya"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Mitochondrial Complex II In Intestinal Epithelial Cells Regulates T-cell Mediated Immunopathology(Springer Nature, 2021) Fujiwara, Hideaki; Seike, Keisuke; Brooks, Michael D.; Mathew, Anna V.; Kovalenko, Ilya; Pal, Anupama; Lee, Ho-Joon; Peltier, Daniel; Kim, Stephanie; Liu, Chen; Oravecz-Wilson, Katherine; Li, Lu; Sun, Yaping; Byun, Jaeman; Maeda, Yoshinobu; Wicha, Max S.; Saunders, Tom; Rehemtulla, Alnawaz; Lyssiotis, Costas A.; Pennathur, Subramaniam; Reddy, Pavan; Microbiology and Immunology, School of MedicineIntestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease (GVHD), inflammatory bowel disease (IBD) and immune checkpoint blockade (ICB) mediated colitis. But little is known about the target cell intrinsic features that influence disease severity. Herein we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses identified disruption of IEC intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC specific mitochondrial complex II component SDHA in the regulation of the severity of T cell mediated intestinal diseases.Item A Pan-ALDH1A Inhibitor Induces Necroptosis in Ovarian Cancer Stem-like Cells(Elsevier, 2019-03-12) Chefetz, Ilana; Grimley, Edward; Yang, Kun; Hong, Linda; Vinogradova, Ekaterina V.; Suciu, Radu; Kovalenko, Ilya; Karnak, David; Morgan, Cynthia A.; Chtcherbinine, Mikhail; Buchman, Cameron; Huddle, Brandt; Barraza, Scott; Morgan, Meredith; Bernstein, Kara A.; Yoon, Euisik; Lombard, David B.; Bild, Andrea; Mehta, Geeta; Romero, Iris; Chiang, Chun-Yi; Landen, Charles; Cravatt, Benjamin; Hurley, Thomas D.; Larsen, Scott D.; Buckanovich, Ronald J.; Department of Biochemistry and Molecular Biology, School of MedicineSummary Ovarian cancer is typified by the development of chemotherapy resistance. Chemotherapy resistance is associated with high aldehyde dehydrogenase (ALDH) enzymatic activity, increased cancer “stemness,” and expression of the stem cell marker CD133. As such, ALDH activity has been proposed as a therapeutic target. Although it remains controversial which of the 19 ALDH family members drive chemotherapy resistance, ALDH1A family members have been primarily linked with chemotherapy resistant and stemness. We identified two ALDH1A family selective inhibitors (ALDH1Ai). ALDH1Ai preferentially kills CD133+ ovarian cancer stem-like cells (CSCs). ALDH1Ai induce necroptotic CSC death, mediated, in part, by the induction of mitochondrial uncoupling proteins and reduction in oxidative phosphorylation. ALDH1Ai is highly synergistic with chemotherapy, reducing tumor initiation capacity and increasing tumor eradication in vivo. These studies link ALDH1A with necroptosis and confirm the family as a critical therapeutic target to overcome chemotherapy resistance and improve patient outcomes.