ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kondo, Rika"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Finite Element Analysis of the Mouse Proximal Ulna in Response to Elbow Loading
    (Springer, 2018) Jiang, Feifei; Jalali, Aydin; Deguchi, Chie; Chen, Andy; Liu, Shengzhi; Kondo, Rika; Minami, Kazumasa; Horiuchi, Takashi; Li, Bai-Yan; Robling, Alexander G.; Chen, Jie; Yokota, Hiroki; Mechanical and Energy Engineering, School of Engineering and Technology
    Bone is a mechano-sensitive tissue that alters its structure and properties in response to mechanical loading. We have previously shown that application of lateral dynamic loads to a synovial joint, such as the knee and elbow, suppresses degradation of cartilage and prevents bone loss in arthritis and postmenopausal mouse models, respectively. While loading effects on pathophysiology have been reported, mechanical effects on the loaded joint are not fully understood. Because the direction of joint loading is non-axial, not commonly observed in daily activities, strain distributions in the laterally loaded joint are of great interest. Using elbow loading, we herein characterized mechanical responses in the loaded ulna focusing on the distribution of compressive strain. In response to 1-N peak-to-peak loads, which elevate bone mineral density and bone volume in the proximal ulna in vivo, we conducted finite-element analysis and evaluated strain magnitude in three loading conditions. The results revealed that strain of ~ 1000 μstrain (equivalent to 0.1% compression) or above was observed in the limited region near the loading site, indicating that the minimum effective strain for bone formation is smaller with elbow loading than axial loading. Calcein staining indicated that elbow loading increased bone formation in the regions predicted to undergo higher strain.
  • Loading...
    Thumbnail Image
    Item
    Pitavastatin slows tumor progression and alters urine-derived volatile organic compounds through the mevalonate pathway
    (Wiley, 2019-10-04) Wang, Luqi; Wang, Yue; Chen, Andy; Teli, Meghana; Kondo, Rika; Jalali, Aydin; Fan, Yao; Liu, Shengzhi; Zhao, Xinyu; Siegel, Amanda; Minami, Kazumasa; Agarwal, Mangilal; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and Technology
    Bone is a frequent site of metastasis from breast cancer, and a desirable drug could suppress tumor growth as well as metastasis-linked bone loss. Currently, no drug is able to cure breast cancer–associated bone metastasis. In this study, we focused on statins that are known to inhibit cholesterol production and act as antitumor agents. After an initial potency screening of 7 U.S. Food and Drug Administration–approved statins, we examined pitavastatin as a drug candidate for inhibiting tumor and tumor-induced bone loss. In vitro analysis revealed that pitavastatin acted as an inhibitor of tumor progression by altering stress to the endoplasmic reticulum, down-regulating peroxisome proliferator–activated receptor γ, and reducing Snail and matrix metalloproteinase 9. In bone homeostasis, it blocked osteoclast development by suppressing transcription factors c-Fos and JunB, but stimulated osteoblast mineralization by regulating bone morphogenetic protein 2 and p53. In a mouse model, pitavastatin presented a dual role in tumor inhibition in the mammary fat pad, as well as in bone protection in the osteolytic tibia. In mass spectrometry–based analysis, volatile organic compounds (VOCs) that were linked to lipid metabolism and cholesterol synthesis were elevated in mice from the tumor-grown placebo group. Notably, pitavastatin-treated mice reduced specific VOCs that are linked to lipid metabolites in the mevalonate pathway. Collectively, the results lay a foundation for further investigation of pitavastatin’s therapeutic efficacy in tumor-induced bone loss, as well as VOC-based diagnosis of tumor progression and treatment efficacy.—Wang, L., Wang, Y., Chen, A., Teli, M., Kondo, R., Jalali, A., Fan, Y., Liu, S., Zhao, X., Siegel, A., Minami, K., Agarwal, M., Li, B.-Y., Yokota, H. Pitavastatin slows tumor progression and alters urine-derived volatile organic compounds through the mevalonate pathway.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University