- Browse by Author
Browsing by Author "Koeppe, Robert A."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item APOE effect on Alzheimer's disease biomarkers in older adults with significant memory concern(Elsevier, 2015-12) Risacher, Shannon L.; Kim, Sungeun; Nho, Kwangsik; Foroud, Tatiana; Shen, Li; Peterson, Ronald C.; Jack Jr, Clifford R.; Beckett, Laurel A.; Aisen, Paul S.; Koeppe, Robert A.; Jagust, William J.; Shaw, Leslie M.; Trojanowski, John Q.; Department of Radiology and Imaging Sciences, IU School of MedicineINTRODUCTION: This study assessed apolipoprotein E (APOE) ε4 carrier status effects on Alzheimer's disease imaging and cerebrospinal fluid (CSF) biomarkers in cognitively normal older adults with significant memory concerns (SMC). METHODS: Cognitively normal, SMC, and early mild cognitive impairment participants from Alzheimer's Disease Neuroimaging Initiative were divided by APOE ε4 carrier status. Diagnostic and APOE effects were evaluated with emphasis on SMC. Additional analyses in SMC evaluated the effect of the interaction between APOE and [(18)F]Florbetapir amyloid positivity on CSF biomarkers. RESULTS: SMC ε4+ showed greater amyloid deposition than SMC ε4-, but no hypometabolism or medial temporal lobe (MTL) atrophy. SMC ε4+ showed lower amyloid beta 1-42 and higher tau/p-tau than ε4-, which was most abnormal in APOE ε4+ and cerebral amyloid positive SMC. DISCUSSION: SMC APOE ε4+ show abnormal changes in amyloid and tau biomarkers, but no hypometabolism or MTL neurodegeneration, reflecting the at-risk nature of the SMC group and the importance of APOE in mediating this risk.Item Association of plasma and cortical beta-amyloid is modulated by APOE ε4 status.(Elsevier, 2014-01) Swaminathan, Shanker; Risacher, Shannon L.; Yoder, Karmen K.; West, John D.; Shen, Li; Kim, Sungeun; Inlow, Mark; Foroud, Tatiana; Jagust, William J.; Koeppe, Robert A.; Mathis, Chester A.; Shaw, Leslie M.; Trojanowski, John Q.; Soares, Holly; Aisen, Paul S.; Petersen, Ronald C.; Weiner, Michael W.; Saykin, Andrew J.; Department of Radiology and Imaging Sciences, IU School of MedicineBackground: APOE ε4’s role as a modulator of the relationship between soluble plasma beta-amyloid (Aβ) and fibrillar brain Aβ measured by Pittsburgh Compound-B positron emission tomography ([11C]PiB PET) has not been assessed. Methods: Ninety-six Alzheimer’s Disease Neuroimaging Initiative participants with [11C]PiB scans and plasma Aβ1-40 and Aβ1-42 measurements at time of scan were included. Regional and voxel-wise analyses of [11C]PiB data were used to determine the influence of APOE ε4 on association of plasma Aβ1-40, Aβ1-42, and Aβ1-40/Aβ1-42 with [11C]PiB uptake. Results: In APOE ε4− but not ε4+ participants, positive relationships between plasma Aβ1-40/Aβ1-42 and [11C]PiB uptake were observed. Modeling the interaction of APOE and plasma Aβ1-40/Aβ1-42 improved the explained variance in [11C]PiB binding compared to using APOE and plasma Aβ1-40/Aβ1-42 as separate terms. Conclusions: The results suggest that plasma Aβ is a potential Alzheimer’s disease biomarker and highlight the importance of genetic variation in interpretation of plasma Aβ levels.Item Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies(Elsevier, 2019-02-22) Su, Yi; Flores, Shaney; Wang, Guoqiao; Hornbeck, Russ C.; Speidel, Benjamin; Joseph-Mathurin, Nelly; Vlassenko, Andrei G.; Gordon, Brian A.; Koeppe, Robert A.; Klunk, William E.; Clifford, R. Jack, Jr.; Farlow, Martin R.; Salloway, Stephen; Snider, Barbara J.; Berman, Sarah B.; Roberson, Erik D.; Broschi, Jared; Jimenez-Velazques, Ivonne; van Dyck, Christopher H.; Galasko, Douglas; Yuan, Shauna H.; Jayadev, Suman; Honig, Lawrence S.; Gauthier, Serge; Hsiung, Ging-Yuek R.; Masellis, Mario; Brooks, William S.; Fulham, Michael; Clarnette, Roger; Masters, Colin L.; Wallon, David; Hannequin, Didier; Dubois, Bruno; Pariente, Jeremie; Sanchez-Valle, Raquel; Mummery, Catherine; Ringman, John M.; Bottlaender, Michel; Klein, Gregory; Milosavljevic-Ristic, Smiljana; McDade, Eric; Xiong, Chengjie; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L.S.; Neurology, School of MedicineIntroduction: Quantitative in vivo measurement of brain amyloid burden is important for both research and clinical purposes. However, the existence of multiple imaging tracers presents challenges to the interpretation of such measurements. This study presents a direct comparison of Pittsburgh compound B-based and florbetapir-based amyloid imaging in the same participants from two independent cohorts using a crossover design. Methods: Pittsburgh compound B and florbetapir amyloid PET imaging data from three different cohorts were analyzed using previously established pipelines to obtain global amyloid burden measurements. These measurements were converted to the Centiloid scale to allow fair comparison between the two tracers. The mean and inter-individual variability of the two tracers were compared using multivariate linear models both cross-sectionally and longitudinally. Results: Global amyloid burden measured using the two tracers were strongly correlated in both cohorts. However, higher variability was observed when florbetapir was used as the imaging tracer. The variability may be partially caused by white matter signal as partial volume correction reduces the variability and improves the correlations between the two tracers. Amyloid burden measured using both tracers was found to be in association with clinical and psychometric measurements. Longitudinal comparison of the two tracers was also performed in similar but separate cohorts whose baseline amyloid load was considered elevated (i.e., amyloid positive). No significant difference was detected in the average annualized rate of change measurements made with these two tracers. Discussion: Although the amyloid burden measurements were quite similar using these two tracers as expected, difference was observable even after conversion into the Centiloid scale. Further investigation is warranted to identify optimal strategies to harmonize amyloid imaging data acquired using different tracers.Item Preferential degradation of cognitive networks differentiates Alzheimer's disease from ageing(Oxford University Press, 2018-05-01) Chhatwal, Jasmeer P.; Schultz, Aaron P.; Johnson, Keith A.; Hedden, Trey; Jaimes, Sehily; Benzinger, Tammie L S.; Jack, Clifford; Ances, Beau M.; Ringman, John M.; Marcus, Daniel S.; Ghetti, Bernardino; Farlow, Martin R.; Danek, Adrian; Levin, Johannes; Yakushev, Igor; Laske, Christoph; Koeppe, Robert A.; Galasko, Douglas R.; Xiong, Chengjie; Masters, Colin L.; Schofield, Peter R.; Kinnunen, Kirsi M.; Salloway, Stephen; Martins, Ralph N.; McDade, Eric; Cairns, Nigel J.; Buckles, Virginia D.; Morris, John C.; Bateman, Randall; Sperling, Reisa A.; Pathology and Laboratory Medicine, School of MedicineConverging evidence from structural, metabolic and functional connectivity MRI suggests that neurodegenerative diseases, such as Alzheimer's disease, target specific neural networks. However, age-related network changes commonly co-occur with neuropathological cascades, limiting efforts to disentangle disease-specific alterations in network function from those associated with normal ageing. Here we elucidate the differential effects of ageing and Alzheimer's disease pathology through simultaneous analyses of two functional connectivity MRI datasets: (i) young participants harbouring highly-penetrant mutations leading to autosomal-dominant Alzheimer's disease from the Dominantly Inherited Alzheimer's Network (DIAN), an Alzheimer's disease cohort in which age-related comorbidities are minimal and likelihood of progression along an Alzheimer's disease trajectory is extremely high; and (ii) young and elderly participants from the Harvard Aging Brain Study, a cohort in which imaging biomarkers of amyloid burden and neurodegeneration can be used to disambiguate ageing alone from preclinical Alzheimer's disease. Consonant with prior reports, we observed the preferential degradation of cognitive (especially the default and dorsal attention networks) over motor and sensory networks in early autosomal-dominant Alzheimer's disease, and found that this distinctive degradation pattern was magnified in more advanced stages of disease. Importantly, a nascent form of the pattern observed across the autosomal-dominant Alzheimer's disease spectrum was also detectable in clinically normal elderly with clear biomarker evidence of Alzheimer's disease pathology (preclinical Alzheimer's disease). At the more granular level of individual connections between node pairs, we observed that connections within cognitive networks were preferentially targeted in Alzheimer's disease (with between network connections relatively spared), and that connections between positively coupled nodes (correlations) were preferentially degraded as compared to connections between negatively coupled nodes (anti-correlations). In contrast, ageing in the absence of Alzheimer's disease biomarkers was characterized by a far less network-specific degradation across cognitive and sensory networks, of between- and within-network connections, and of connections between positively and negatively coupled nodes. We go on to demonstrate that formalizing the differential patterns of network degradation in ageing and Alzheimer's disease may have the practical benefit of yielding connectivity measurements that highlight early Alzheimer's disease-related connectivity changes over those due to age-related processes. Together, the contrasting patterns of connectivity in Alzheimer's disease and ageing add to prior work arguing against Alzheimer's disease as a form of accelerated ageing, and suggest multi-network composite functional connectivity MRI metrics may be useful in the detection of early Alzheimer's disease-specific alterations co-occurring with age-related connectivity changes. More broadly, our findings are consistent with a specific pattern of network degradation associated with the spreading of Alzheimer's disease pathology within targeted neural networks.Item Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer's disease(Elsevier, 2020-08-01) Schultz, Stephanie A.; Strain, Jeremy F.; Adedokun, Adedamola; Wang, Qing; Preische, Oliver; Kuhle, Jens; Flores, Shaney; Keefe, Sarah; Dincer, Aylin; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Cash, David M.; Chhatwal, Jasmeer; Cruchaga, Carlos; Ewers, Michael; Fox, Nick N.; Ghetti, Bernardino; Goate, Alison; Graff-Radford, Neill R.; Hassenstab, Jason J.; Hornbeck, Russ; Jack, Clifford; Johnson, Keith; Joseph-Mathurin, Nelly; Karch, Celeste M.; Koeppe, Robert A.; Lee, Athene K. W.; Levin, Johannes; Masters, Colin; McDade, Eric; Perrin, Richard J.; Rowe, Christopher C.; Salloway, Stephen; Saykin, Andrew J.; Sperling, Reisa; Su, Yi; Villemagne, Victor L.; Vöglein, Jonathan; Weiner, Michael; Xiong, Chengjie; Fagan, Anne M.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.; Jucker, Mathias; Gordon, Brian A.; Pathology and Laboratory Medicine, School of MedicineNeurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurodegenerative diseases. However, there have been limited investigations relating NfL to the concurrent measures of white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data. In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial diffusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results demonstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings across multiple neurodegenerative diseases.Item Utility of perfusion PET measures to assess neuronal injury in Alzheimer's disease(Elsevier, 2018-09-27) Joseph-Mathurin, Nelly; Su, Yi; Blazey, Tyler M.; Jasielec, Mateusz; Vlassenko, Andrei; Friedrichsen, Karl; Gordon, Brian A.; Hornbeck, Russ C.; Cash, Lisa; Ances, Beau M.; Veale, Thomas; Cash, David M.; Brickman, Adam M.; Buckles, Virginia; Cairns, Nigel J.; Cruchaga, Carlos; Goate, Alison; Jack, Clifford R., Jr.; Karch, Celeste; Klunk, William; Koeppe, Robert A.; Marcus, Daniel S.; Mayeux, Richard; McDade, Eric; Noble, James M.; Ringman, John; Saykin, Andrew J.; Thompson, Paul M.; Xiong, Chengjie; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.; Dominantly Inherited Alzheimer Network; Radiology and Imaging Sciences, School of MedicineIntroduction: 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is commonly used to estimate neuronal injury in Alzheimer's disease (AD). Here, we evaluate the utility of dynamic PET measures of perfusion using 11C-Pittsburgh compound B (PiB) to estimate neuronal injury in comparison to FDG PET. Methods: FDG, early frames of PiB images, and relative PiB delivery rate constants (PiB-R1) were obtained from 110 participants from the Dominantly Inherited Alzheimer Network. Voxelwise, regional cross-sectional, and longitudinal analyses were done to evaluate the correlation between images and estimate the relationship of the imaging biomarkers with estimated time to disease progression based on family history. Results: Metabolism and perfusion images were spatially correlated. Regional PiB-R1 values and FDG, but not early frames of PiB images, significantly decreased in the mutation carriers with estimated year to onset and with increasing dementia severity. Discussion: Hypometabolism estimated by PiB-R1 may provide a measure of brain perfusion without increasing radiation exposure.