- Browse by Author
Browsing by Author "Koenig, Jenna"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Combinatorial Inhibition of Epigenetic Regulators to Treat Glioblastoma(2022-07-29) Burket, Noah; Koenig, Jenna; Saratsis, AmandaGlioblastoma (GBM) is a deadly primary brain cancer that affects 12,000 patients in the US annually with a median survival time of 15 months. Temozolomide is the standard-of-care chemotherapy for GBM; however, many tumors are resistant, necessitating the expansion of therapeutic options. EZH2 and JMJD3 are two proteins responsible for epigenetic regulation of the genome via histone methylation, with EZH2 also affecting non-histone targets. Prior studies showed that inhibition of these proteins decreased cell counts and induced radiosensitivity in GBM cells. Thus, we investigated combined use of EZH2 inhibitor, EPZ6438, and JMJD3 inhibitor, GSK-J4, in the treatment of temozolomide-resistant GBM10 cells. Non-irradiated cells were treated with both drugs singly and combined, and counted at 24-, 48-, and 72-hour intervals. Irradiated cells were pre-treated with each drug and combination therapy for three days, irradiated, and then counted at 24-, 48-, and 72-hour intervals. Western blot was used to investigate dsDNA damage biomarker y-H2AX, gene-silencing modification H3K27me3, tumor suppressor p53, EZH2, and JMJD3 expression in non-irradiated and irradiated cells following drug treatment. Single EPZ-6438 and GSK-J4 treatments reduced cell counts with increasing concentration and time. GSK-J4 appears to reduce cell counts more than EPZ-6438 alone, and combinatorial use reduces this further. Western blot reveals increased H3K27me3 expression with GSK-J4 treatment following radiation, but not with EPZ-6438. y-H2AX expression is increased after EPZ-6438 treatment but is not further increased with radiation. Meanwhile, GSK-J4 increased y-H2AX, but only after irradiation. Reduced cell counts following treatment with GSK-J4 may be due to its effects on gene silencing from inhibition of H3K27 demethylation. Additionally, increased dsDNA breaks seen in EPZ-6438 and GSK-J4 supports their roles in radiosensitizing GBM cells. This study highlights the importance of further investigation into GSK-J4 and EPZ-6438 combination therapy in temozolomide-resistant GBM tumors.Item Combined CDK4/6 and ERK1/2 inhibition enhances anti-tumor activity in NF1-associated plexiform neurofibroma(American Association for Cancer Research, 2023) Flint, Alyssa C.; Mitchell, Dana K.; Angus, Steven P.; Smith, Abbi E.; Bessler, Waylan; Jiang, Li; Mang, Henry; Li, Xiaohong; Lu, Qingbo; Rodriguez, Brooke; Sandusky, George E.; Masters, Andi R.; Zhang, Chi; Dang, Pengtao; Koenig, Jenna; Johnson, Gary L.; Shen, Weihua; Liu, Jiangang; Aggarwal, Amit; Donoho, Gregory P.; Willard, Melinda D.; Bhagwat, Shripad V.; Clapp, D. Wade; Rhodes, Steven D.; Pediatrics, School of MedicinePurpose: Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity. Experimental design: Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF. Informed by these results, we evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, and the ERK1/2 inhibitor, LY3214996, alone and in combination in reducing PNF tumor burden in Nf1flox/flox;PostnCre mice. Results: Converging signatures of CDK4/6 and RAS/MAPK pathway activation were identified within the transcriptome and kinome that were conserved in both murine and human PNF. We observed robust additivity of the CDK4/6 inhibitor, abemaciclib, in combination with the ERK1/2 inhibitor, LY3214996, in murine and human NF1(Nf1) mutant Schwann cells. Consistent with these findings, the combination of abemaciclib (CDK4/6i) and LY3214996 (ERK1/2i) synergized to suppress molecular signatures of MAPK activation and exhibited enhanced antitumor activity in Nf1flox/flox;PostnCre mice in vivo. Conclusions: These findings provide rationale for the clinical translation of CDK4/6 inhibitors alone and in combination with therapies targeting the RAS/MAPK pathway for the treatment of PNF and other peripheral nerve sheath tumors in persons with NF1.Item Pituitary Adenoma and Social Determinants of Health: Tracing PAths to Better Outcomes(2024-09-28) Virtanen , Piiamaria S.; Obeng-Gyasi, Barnabas; Brown, Ethan D. L.; Colter, Austyn; Koenig, Jenna; Burket, Noah; Szilagyi, Halie; Williams, Greer; Halalmeh, Dia; Wang, Hannah S.; Tinkham, Shawn A.; Vetter, Cecelia J.; Richardson, Angela M.