- Browse by Author
Browsing by Author "Knoten, Amanda"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item An atlas of healthy and injured cell states and niches in the human kidney(Springer Nature, 2023) Lake, Blue B.; Menon, Rajasree; Winfree, Seth; Hu, Qiwen; Ferreira, Ricardo Melo; Kalhor, Kian; Barwinska, Daria; Otto, Edgar A.; Ferkowicz, Michael; Diep, Dinh; Plongthongkum, Nongluk; Knoten, Amanda; Urata, Sarah; Mariani, Laura H.; Naik, Abhijit S.; Eddy, Sean; Zhang, Bo; Wu, Yan; Salamon, Diane; Williams, James C.; Wang, Xin; Balderrama, Karol S.; Hoover, Paul J.; Murray, Evan; Marshall, Jamie L.; Noel, Teia; Vijayan, Anitha; Hartman, Austin; Chen, Fei; Waikar, Sushrut S.; Rosas, Sylvia E.; Wilson, Francis P.; Palevsky, Paul M.; Kiryluk, Krzysztof; Sedor, John R.; Toto, Robert D.; Parikh, Chirag R.; Kim, Eric H.; Satija, Rahul; Greka, Anna; Macosko, Evan Z.; Kharchenko, Peter V.; Gaut, Joseph P.; Hodgin, Jeffrey B.; KPMP Consortium; Eadon, Michael T.; Dagher, Pierre C.; El-Achkar, Tarek M.; Zhang, Kun; Kretzler, Matthias; Jain, Sanjay; Medicine, School of MedicineUnderstanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.Item The chromatin landscape of healthy and injured cell types in the human kidney(Springer Nature, 2024-01-10) Gisch, Debora L.; Brennan, Michelle; Lake, Blue B.; Basta, Jeannine; Keller, Mark S.; Ferreira, Ricardo Melo; Akilesh, Shreeram; Ghag, Reetika; Lu, Charles; Cheng, Ying-Hua; Collins, Kimberly S.; Parikh, Samir V.; Rovin, Brad H.; Robbins, Lynn; Stout, Lisa; Conklin, Kimberly Y.; Diep, Dinh; Zhang, Bo; Knoten, Amanda; Barwinska, Daria; Asghari, Mahla; Sabo, Angela R.; Ferkowicz, Michael J.; Sutton, Timothy A.; Kelly, Katherine J.; De Boer, Ian H.; Rosas, Sylvia E.; Kiryluk, Krzysztof; Hodgin, Jeffrey B.; Alakwaa, Fadhl; Winfree, Seth; Jefferson, Nichole; Türkmen, Aydın; Gaut, Joseph P.; Gehlenborg, Nils; Phillips, Carrie L.; El-Achkar, Tarek M.; Dagher, Pierre C.; Hato, Takashi; Zhang, Kun; Himmelfarb, Jonathan; Kretzler, Matthias; Mollah, Shamim; Kidney Precision Medicine Project (KPMP); Jain, Sanjay; Rauchman, Michael; Eadon, Michael T.; Medicine, School of MedicineThere is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney's active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.