- Browse by Author
Browsing by Author "Klopfenstein, Nathan"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Arid3b Is Critical for B Lymphocyte Development(Plos, 2016-08-18) Kurkewich, Jeffrey L.; Klopfenstein, Nathan; Hallas, William M.; Wood, Christian; Sattler, Rachel A.; Das, Chhaya; Tucker, Haley; Dahl, Richard; Dahl, Karen D. Cowden; Department of Biochemistry & Molecular Biology, IU School of MedicineArid3a and Arid3b belong to a subfamily of ARID (AT-rich interaction domain) transcription factors. The Arid family is involved in regulating chromatin accessibility, proliferation, and differentiation. Arid3a and Arid3b are closely related and share a unique REKLES domain that mediates their homo- and hetero-multimerization. Arid3a was originally isolated as a B cell transcription factor binding to the AT rich matrix attachment regions (MARS) of the immunoglobulin heavy chain intronic enhancer. Deletion of Arid3a results in a highly penetrant embryonic lethality with severe defects in erythropoiesis and hematopoietic stem cells (HSCs). The few surviving Arid3a-/- (<1%) animals have decreased HSCs and early progenitors in the bone marrow, but all mature lineages are normally represented in the bone marrow and periphery except for B cells. Arid3b-/- animals die around E7.5 precluding examination of hematopoietic development. So it is unclear whether the phenotype of Arid3a loss on hematopoiesis is dependent or independent of Arid3b. In this study we circumvented this limitation by also examining hematopoiesis in mice with a conditional allele of Arid3b. Bone marrow lacking Arid3b shows decreased common lymphoid progenitors (CLPs) and downstream B cell populations while the T cell and myeloid lineages are unchanged, reminiscent of the adult hematopoietic defect in Arid3a mice. Unlike Arid3a-/- mice, HSC populations are unperturbed in Arid3b-/- mice. This study demonstrates that HSC development is independent of Arid3b, whereas B cell development requires both Arid3a and Arid3b transcription factors.Item Leukotriene B4 licenses inflammasome activation to enhance skin host defense(National Academy of Science, 2020-12-01) Guerta Salina, Ana Carolina; Brandt, Stephanie L.; Klopfenstein, Nathan; Blackman, Amondrea; Ribeiro Bazzano, Júlia Miranda; Sá-Nunes, Anderson; Byers-Glosson, Nicole; Brodskyn, Claudia; Machado Tavares, Natalia; Santos Da Silva, Icaro Bonyek; Medeiros, Alexandra I.; Serezani, C. Henrique; Microbiology and Immunology, School of MedicineThe initial production of inflammatory mediators dictates host defense as well as tissue injury. Inflammasome activation is a constituent of the inflammatory response by recognizing pathogen and host-derived products and eliciting the production of IL-1β and IL-18 in addition to inducing a type of inflammatory cell death termed "pyroptosis." Leukotriene B4 (LTB4) is a lipid mediator produced quickly (seconds to minutes) by phagocytes and induces chemotaxis, increases cytokine/chemokine production, and enhances antimicrobial effector functions. Whether LTB4 directly activates the inflammasome remains to be determined. Our data show that endogenously produced LTB4 is required for the expression of pro-IL-1β and enhances inflammasome assembly in vivo and in vitro. Furthermore, LTB4-mediated Bruton's tyrosine kinase (BTK) activation is required for inflammasome assembly in vivo as well for IL-1β-enhanced skin host defense. Together, these data unveil a new role for LTB4 in enhancing the expression and assembly of inflammasome components and suggest that while blocking LTB4 actions could be a promising therapeutic strategy to prevent inflammasome-mediated diseases, exogenous LTB4 can be used as an adjuvant to boost inflammasome-dependent host defense.Item The miR-23a∼27a∼24-2 microRNA Cluster Promotes Inflammatory Polarization of Macrophages(The American Association of Immunologists, 2021) Boucher, Austin; Klopfenstein, Nathan; Hallas, William Morgan; Skibbe, Jennifer; Appert, Andrew; Jang, Seok Hee; Pulakanti, Kirthi; Rao, Sridhar; Cowden Dahl, Karen D.; Dahl, Richard; Microbiology and Immunology, School of MedicineMacrophages are critical for regulating inflammatory responses. Environmental signals polarize macrophages to either a pro-inflammatory (M1) state or an anti-inflammatory (M2) state. We observed that the microRNA cluster mirn23a, coding for miRs-23a~27a~24–2, regulates mouse macrophage polarization. Gene expression analysis of mirn23a deficient myeloid progenitors revealed a decrease in Toll like receptor and interferon signaling. Mirn23a−/− bone marrow derived macrophages (BMDMs) have an attenuated response to lipopolysaccharide (LPS) demonstrating an anti-inflammatory phenotype in mature cells. In vitro, mirn23a−/− BMDMs have decreased M1 responses and an enhanced M2 responses. Overexpression of mirn23a has the opposite effect enhancing M1 and inhibiting M2 gene expression. Interestingly expression of mirn23a miRNAs goes down with inflammatory stimulation and up with anti-inflammatory stimulation suggesting that its regulation prevents locking macrophages into polarized states. M2 polarization of tumor associated macrophages (TAMs) correlates with poor outcome for many tumors, so to determine if there was a functional consequence of mirn23a loss modulating immune cell polarization we assayed syngeneic tumor growth in wildtype and mirn23a−/− mice. Consistent with the increased anti-inflammatory/ immunosuppressive phenotype in vitro, mirn23a−/− mice inoculated with syngeneic tumor cells had worse outcomes compared to wildtype mice. Co-injecting tumor cells with mirn23a−/− BMDMs into wildtype mice phenocopied tumor growth in mirn23a−/− mice supporting a critical role for mirn23a miRNAs in macrophage mediated tumor immunity. Our data demonstrates that mirn23a regulates M1/M2 polarization and suggests that manipulation of mirn23a miRNA can be used to direct macrophage polarization to drive a desired immune response.Item The mirn23a and mirn23b microrna clusters are necessary for proper hematopoietic progenitor cell production and differentiation(Elsevier, 2018) Kurkewich, Jeffrey L.; Boucher, Austin; Klopfenstein, Nathan; Baskar, Ramdas; Kapur, Reuben; Dahl, Richard; Microbiology and Immunology, School of MedicineMice deficient for microRNA (miRNA) cluster mirn23a exhibit increased B lymphopoiesis at the expense of myelopoiesis, whereas hematopoietic stem and progenitor cell (HSPC) populations are unchanged. Mammals possess a paralogous mirn23b gene that can give rise to three mature miRNAs (miR-23b, miR-24-1, and miR-27b) that have identical seed/mRNA-targeting sequences to their mirn23a counterparts. To assess whether compound deletion of mirn23a and mirn23b exacerbates the hematopoietic phenotype observed in mirn23a−/− mice, we generated a compound mirn23a−/−mirn23bfl/fl:Mx1-Cre conditional knockout mouse and assayed hematopoietic development after excision of mirn23b. Loss of both genes in adult bone marrow further skewed HSPC differentiation toward B cells at the expense of myeloid cells, demonstrating a dosage-dependent effect on regulating cell differentiation. Strikingly, double-knockout (DKO) mice had decreased bone marrow cellularity with significantly decreased hematopoietic stem cell and HSPC populations, a phenotype not observed in mice deficient for mirn23a alone. Competitive transplantation assays showed decreased contribution of mirn23a−/−mirn23b−/− HSPCs to hematopoietic lineages at 6 and 12 weeks after transplantation. Defects in the proliferation of mirn23a−/−b−/− HSPCs was not observed; however, DKO cells were more apoptotic compared with both wild-type and mirn23a−/− cells. Together, our data show that complete loss of mirn23a/mirn23b miRNAs results in decreased blood production and affects lineage output in a concentration-dependent manner.