ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kling, Mitchel A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Genetic Influences on Plasma Homocysteine Levels in African Americans and Yoruba Nigerians.
    (IOS Press, 2015) Kim, Sungeun; Nho, Kwangsik; Ramanan, Vijay K.; Lai, Dongbing; Foroud, Tatiana M.; Lane, Katie; Murrell, Jill R.; Gao, Sujuan; Hall, Kathleen S.; Unverzagt, Frederick W.; Baiyewu, Olusegun; Ogunniyi, Adesola; Gureje, Oye; Kling, Mitchel A.; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima; Hendrie, Hugh C.; Saykin, Andrew J.; Department of Radiology and Imaging Sciences, IU School of Medicine
    Plasma homocysteine, a metabolite involved in key cellular methylation processes seems to be implicated in cognitive functions and cardiovascular health with its high levels representing a potential modifiable risk factor for Alzheimer’s disease (AD) and other dementias. A better understanding of the genetic factors regulating homocysteine levels, particularly in non-white populations, may help in risk stratification analyses of existing clinical trials and may point to novel targets for homocysteine-lowering therapy. To identify genetic influences on plasma homocysteine levels in individuals with African ancestry, we performed a targeted gene and pathway-based analysis using a priori biological information and then to identify new association performed a genome-wide association study. All analyses used combined data from the African American and Yoruba cohorts from the Indianapolis-Ibadan Dementia Project. Targeted analyses demonstrated significant associations of homocysteine and variants within the CBS (Cystathionine beta-Synthase) gene. We identified a novel genome-wide significant association of the AD risk gene CD2AP (CD2-associated protein) with plasma homocysteine levels in both cohorts. Minor allele (T) carriers of identified CD2AP variant (rs6940729) exhibited decreased homocysteine level. Pathway enrichment analysis identified several interesting pathways including the GABA receptor activation pathway. This is noteworthy given the known antagonistic effect of homocysteine on GABA receptors. These findings identify several new targets warranting further investigation in relation to the role of homocysteine in neurodegeneration.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University