ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Klaunig, Mallory J."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Impaired Cerebellar-Dependent Eyeblink Conditioning in First-Degree Relatives of Individuals With Schizophrenia
    (Oxford University Press, 2014-09) Bolbecker, Amanda R.; Kent, Jerillyn S.; Petersen, Isaac T.; Klaunig, Mallory J.; Forsyth, Jennifer K.; Howell, Josselyn M.; Westfall, Daniel R.; O’Donnell, Brian F.; Hetrick, William P.; Department of Psychiatry, IU School of Medicine
    Consistent with reports of cerebellar structural, functional, and neurochemical anomalies in schizophrenia, robust cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been observed in the disorder. Impaired dEBC is also present in schizotypal personality disorder, an intermediate phenotype of schizophrenia. The present work sought to determine whether dEBC deficits exist in nonpsychotic first-degree relatives of individuals with schizophrenia. A single-cue tone dEBC paradigm consisting of 10 blocks with 10 trials each (9 paired and 1 unpaired trials) was used to examine the functional integrity of cerebellar circuitry in schizophrenia participants, individuals with a first-degree relative diagnosed with schizophrenia, and healthy controls with no first-degree relatives diagnosed with schizophrenia. The conditioned stimulus (a 400ms tone) coterminated with the unconditioned stimulus (a 50ms air puff to the left eye) on paired trials. One relative and 2 healthy controls were removed from further analysis due to declining conditioned response rates, leaving 18 schizophrenia participants, 17 first-degree relatives, and 16 healthy controls. Electromyographic data were subsequently analyzed using growth curve models in hierarchical linear regression. Acquisition of dEBC conditioned responses was significantly impaired in schizophrenia and first-degree relative groups compared with controls. This finding that cerebellar-mediated associative learning deficits are present in first-degree relatives of individuals with schizophrenia provides evidence that dEBC abnormalities in schizophrenia may not be due to medication or course of illness effects. Instead, the present results are consistent with models of schizophrenia positing cerebellar-cortical circuit abnormalities and suggest that cerebellar abnormalities represent a risk marker for the disorder.
  • Loading...
    Thumbnail Image
    Item
    Motor Deficits in Schizophrenia Quantified by Nonlinear Analysis of Postural Sway
    (Public Library of Science, 2012) Kent, Jerillyn S.; Hong, S. Lee; Bolbecker, Amanda R.; Klaunig, Mallory J.; Forsyth, Jennifer K.; O’Donnell, Brian F.; Hetrick, William P.; Psychiatry, School of Medicine
    Motor dysfunction is a consistently reported but understudied aspect of schizophrenia. Postural sway area was examined in individuals with schizophrenia under four conditions with different amounts of visual and proprioceptive feedback: eyes open or closed and feet together or shoulder width apart. The nonlinear complexity of postural sway was assessed by detrended fluctuation analysis (DFA). The schizophrenia group (n = 27) exhibited greater sway area compared to controls (n = 37). Participants with schizophrenia showed increased sway area following the removal of visual input, while this pattern was absent in controls. Examination of DFA revealed decreased complexity of postural sway and abnormal changes in complexity upon removal of visual input in individuals with schizophrenia. Additionally, less complex postural sway was associated with increased symptom severity in participants with schizophrenia. Given the critical involvement of the cerebellum and related circuits in postural stability and sensorimotor integration, these results are consistent with growing evidence of motor, cerebellar, and sensory integration dysfunction in the disorder, and with theoretical models that implicate cerebellar deficits and more general disconnection of function in schizophrenia.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University